Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:46:39.508Z Has data issue: false hasContentIssue false

Grazing effects of the sea urchin Tetrapygus niger and the snail Tegula atra on a rocky shore of central Peru

Published online by Cambridge University Press:  07 August 2013

Fernando J. Hidalgo*
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, 7600 Mar del Plata, Argentina
Fausto N. Firstater
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, 7600 Mar del Plata, Argentina Instituto de Biología Marina y Pesquera Almirante Storni–IBMPAS–UNCo, Güemes 1030, San Antonio Oeste 8520, Argentina
Betina J. Lomovasky
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, 7600 Mar del Plata, Argentina
Oscar O. Iribarne
Affiliation:
Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, 7600 Mar del Plata, Argentina
*
Correspondence should be addressed to: F.J. Hidalgo, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, 7600 Mar del Plata, Argentina email: fhidalgo@mdp.edu.ar

Abstract

Here we describe habitat use and the grazing effects of the sea urchin Tetrapygus niger and the gastropod Tegula atra in the low intertidal zone of a rocky shore in central Peru (Ancón bay: 11°46′S 77°12′W), where these two species were documented as coexisting with no evidence of habitat segregation between them. Gut content and isotopic analyses revealed differences between their diets: T. atra consumes mainly microalgae while Tetrapygus niger consumed also benthic macroalgae. Individual grazing effects were evaluated with inclusion/exclusion experiments. Tetrapygus niger prevented the colonization of the substrate by sessile organisms, including the dominant mussel Semimytilus algosus, while Tegula atra reduced the abundance of microalgae and green ephemeral macroalgae during early succession, but these effects were overwhelmed by the rapid increase in cover of S. algosus. We suggest that Tetrapygus niger plays a key role in this low intertidal community. Through directly limiting mussels to monopolize the substratum, T. niger can reduce the diversity of mussel associated species; conversely, through controlling primary space holders, T. niger can also benefit other grazers that live on bare substrate by maintaining a suitable area for feeding or living.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayling, A.M. (1981) The role of biological disturbance in temperate subtidal encrusting communities. Ecology 62, 830847.Google Scholar
Bertness, M.D., Gaines, S.D. and Hay, M.E. (2001) Marine community ecology. Sunderland, MA: Sinauer Associates.Google Scholar
Branch, G.M. and Branch, M.L. (1980) Competition between Cellana tramoserica (Sowerby) (Gastropoda) and Patirella exigua (Lamarck) (Asteroidea) and their influence in algal standing stocks. Journal of Experimental Marine Biology and Ecology 48, 3549.CrossRefGoogle Scholar
Bulleri, F., Benedetti-Cecchi, L. and Cinelli, F. (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. Journal of Experimental Marine Biology and Ecology 241, 8195.CrossRefGoogle Scholar
Cobb, J. and Lawrence, J.M. (2005) Diets and coexistence of the sea urchins Lytechinus variegatus and Arbacia punctulata (Echinodermata) along the central Florida gulf coast. Marine Ecology Progress Series 295, 171182.CrossRefGoogle Scholar
Contreras, S. and Castilla, J.C. (1987) Feeding behavior and morphological adaptations in two sympatric sea urchin species in central Chile. Marine Ecology Progress Series 38, 217224.Google Scholar
Crowder, M.J. and Hand, D.J. (1990) Analysis of repeated measures. London: Chapman & Hall.Google Scholar
Day, E. and Branch, G.M. (2002) Effects of sea urchins (Parechinus angulosus) on recruits and juveniles of abalone (Haliotis midae). Ecological Monographs 72, 133149.Google Scholar
Dirección de Hidrografía y Navegación (2006) Tabla de mareas 2006. Puertos de la costa del Perú, Océano Pacífico—América del Sur. Peru: Ministerio de Defensa, Marina de Guerra del Perú.Google Scholar
Duffy, J.E. (2002) Biodiversity and ecosystem function: the consumer connection. Oikos 99, 201219.Google Scholar
Espinosa, F., Guerra-García, J.M., Fa, D. and García-Gómez, J.C. (2006) Effects of competition on an endangered limpet Patella ferruginea (Gastropoda: Patellidae): implications for conservation. Journal of Experimental Marine Biology and Ecology 330, 482492.Google Scholar
Fletcher, W.J. (1987) Interactions among subtidal Australian sea urchins, gastropods, and algae: effects of experimental removals. Ecological Monographs 57, 89109.Google Scholar
Hahn, T. and Denny, M. (1989) Tenacity-mediated selective predation by oystercatchers on intertidal limpets and its role in maintaining habitat partitioning by ‘Collisella' scabra and Lottia digitalis . Marine Ecology Progress Series 53, 110.CrossRefGoogle Scholar
Hidalgo, F.J., Firstater, F.N., Lomovasky, B.J. and Iribarne, O.O. (2011) Effects of a predatory starfish on substrate colonization by a dominant mussel. Marine Ecology Progress Series 432, 103114.Google Scholar
Hobson, K. (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120, 314326.Google Scholar
Hyslop, E.J. (1980) Stomach contents analysis—a review of methods and their application. Journal of Fish Biology 17, 411429.CrossRefGoogle Scholar
Lajtha, K. and Michener, R.H. (2007) Stable isotopes in ecology and environmental science. 2nd edition. Oxford: Blackwell.Google Scholar
Lawrence, J.M. (1975) On the relationships between marine plants and sea urchins. Oceanography and Marine Biology: an Annual Review 13, 213286.Google Scholar
Margalef, R. (1974) Ecología. Barcelona: Omega.Google Scholar
Meneses, I. (1993) Vertical distribution of coralline algae in the rocky intertidal of northern Chile. Hydrobiologia 260/261, 121129.Google Scholar
Moreno, C.A. and Sutherland, J.P. (1982) Physical and biological processes in a Macrocystis pyrifera community near Valdivia, Chile. Oecologia 55, 16.CrossRefGoogle Scholar
Ojeda, F.P. and Santelices, B. (1984) Ecological dominance of Lessonia nigrescens (Phaeophyta) in central Chile. Marine Ecology Progress Series 19, 8391.Google Scholar
Paine, R.T. (1974) Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia 15, 93120.Google Scholar
Paredes, C. (1974) El modelo de zonación de la orilla rocosa del Departamento de Lima. Revista Peruana de Biología 1, 168191.CrossRefGoogle Scholar
Pielou, E.C. (1961) Segregation and symmetry in two-species populations as studied by nearest-neighbour relationships. Journal of Ecology 49, 255269. Google Scholar
Power, M.E., Tilman, D., Estes, J.A., Menge, B.A., Bond, W.J., Mills, L.S., Daily, G., Castilla, J.C., Lubchenco, J. and Paine, R.T. (1996) Challenges in the quest for keystones. BioScience 46, 609620.Google Scholar
Raffaelli, D. and Hawkins, S. (1996) Intertidal ecology. London: Chapman & Hall.Google Scholar
Reyes, Y., Córdova, C., Romero, L. and Paredes, C. (2001) Marcas radulares producidas por gasterópodos pastoreadores del intermareal rocoso. Revista Peruana de Biología 8, 3844.Google Scholar
Rochette, R. and Grand, T.C. (2004) Mechanisms of species coexistence: a field test of theoretical models using intertidal snails. Oikos 105, 512524.Google Scholar
Schmitt, R.J. (1996) Exploitation competition in mobile grazers: trade-offs in use of a limited resource. Ecology 77, 408425.Google Scholar
Steneck, R.S. and Watling, L. (1982) Feeding capabilities and limitation of herbivorous molluscs: a functional group approach. Marine Biology 68, 299319.Google Scholar
Tokeshi, M. and Romero, L. (1995) Filling a gap: dynamics of space occupancy on a mussel-dominated subtropical rocky shore. Marine Ecology Progress Series 119, 167176.CrossRefGoogle Scholar
Underwood, A.J. and Jernakoff, P. (1981) Effects of interactions between algae and grazing gastropods on the structure of a low-shore intertidal algal community. Oecologia 48, 221233.CrossRefGoogle ScholarPubMed
Vance, R.R. (1979) Effects of grazing by the sea urchin, Centrostephanus coronatus, on prey community composition. Ecology 60, 537546.Google Scholar
Vásquez, J.A. (1993) Abundance, distributional patterns and diets of main herbivorous and carnivorous species associated to Lessonia trabeculata kelp beds in northern Chile. Serie Ocasional Universidad Católica del Norte (Chile) 2, 213229.Google Scholar
Vásquez, J.A. (2001) Ecology of Loxechinus albus . In Lawrence, J.M. (ed.) Edible sea urchins: biology and ecology. Amsterdam: Elsevier, pp. 161175.Google Scholar
Vásquez, J.A., Castilla, J.C. and Santelices, B. (1984) Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile. Marine Ecology Progress Series 19, 5563.CrossRefGoogle Scholar
Wahl, M. and Hoppe, K. (2002) Interactions between substratum rugosity, colonization density and periwinkle grazing efficiency. Marine Ecology Progress Series 225, 239249.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 4th edition. Upper Saddle River, NJ: Prentice-Hall.Google Scholar