Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T06:24:38.478Z Has data issue: false hasContentIssue false

Growth and Nutrition of Aplysia Punctata Feeding on a Variety of Marine Algae*

Published online by Cambridge University Press:  11 May 2009

Thomas H. Carefoot
Affiliation:
Marine Science Laboratories, Menai Bridge, Anglesey

Extract

The growth rates of Aplysia punctata Cuvier feeding on eight species of marine algae were found to decrease in the order: Plocamium > Enteromorpha > Ulva > Heterosiphonia > Cryptopleura > Delesseria > Laminaria. The brown alga, Desmarestia aculeata, was not eaten. Except for Enteromorpha and Desmarestia, this was also the order found for the feeding preference of sublittoral Aplysia. Enteromorpha was eaten by Aplysia in preference to all the other algae studied.

No clearly defined trends in the concentrations of ash, protein, fat and carbohydrate in the seaweeds were found to account for these differences in growth rates. Absorption of total dry food matter was lowest from the algae giving the poorest growth (45 and 53%, respectively, of the total dry weight consumed for Delesseria and Laminaria diets) and highest from the seaweeds giving moderate growth (71–75% for Ulva, Heterosiphonia and Cryptopleura diets). For Plocamium and Enteromorpha diets the values were 59 and 65%, respectively. Carbohydrate materials were found to constitute 42–75% of the total dry weight of food material absorbed by Aplysia on all the algal diets, and represented the major portion of each. The efficiency of conversion of absorbed food matter into tissues was highest on the algae giving the poorest over-all growth (73% for Delesseria and 40% for Laminaria). For the other seaweed diets the efficiencies decreased in direct relation to the decrease in the value of each for growth of Aplysia (from 35% for Plocamium to 15 % for Cryptopleura).

The same amino acids were found in each food.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, G. D., 1919. Quantitative studies on the rate of respiratory metabolism in Planaria. Am. J. Physiol., Vol. 49, pp. 420–73.CrossRefGoogle Scholar
Allen, K., 1961. Amino acids in the Mollusca. Am. Zoologist, Vol. 1, pp. 253–61.CrossRefGoogle Scholar
Allen, K. & Awapara, J., 1960. Metabolism of sulfur amino acids in Mytilus edulis and Rangia cuneata. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 118, pp. 173–82.CrossRefGoogle Scholar
Berg, K., Lumbye, J. & Ockelmann, K. W., 1958. Seasonal and experimental variations of the oxygen consumption of the limpet Ancylus fluviatilis (O. F. Muller). J. exp. Biol., Vol. 35, pp. 4373.CrossRefGoogle Scholar
Black, W. A. P., 1949. Seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. Part II. Fucus serratus, Fucus vesiculosus, Fucus spiralis and Pelvetia canaliculata. J. Soc. chem. Ind., Lond., Vol. 68, pp. 183–9.CrossRefGoogle Scholar
Black, W. A. P., 1950. The seasonal variation in weight and chemical composition of the common British Laminariaceae. J. mar. biol. Ass. U.K., Vol. 29, pp. 4572.CrossRefGoogle Scholar
Boolootian, R. A. & Lasker, R., 1964. Digestion of brown algae and the distribution of nutrients in the purple sea-urchin Strongylocentrotus purpuratus. Comp. Biochem. Physiol., Vol. II, pp. 273–89.CrossRefGoogle Scholar
Von Brand, T., Nolan, M. O. & Mann, E. R., 1948. Observations on the respiration of Australorbis glabratus and some other aquatic snails. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 95, pp. 199213.CrossRefGoogle ScholarPubMed
Brown, M. E., 1946. The growth of brown trout (Salmo trutta Linn.). I. Factors influencing the growth of trout fry. J. exp. Biol., Vol. 22, pp. 118129.CrossRefGoogle Scholar
Carefoot, T. H., 1967a. Growth and nutrition of three species of opisthobranch molluscs. Comp. Biochem. Physiol., Vol. 21, pp. 627–52.CrossRefGoogle ScholarPubMed
Carefoot, T. H., 1967b. Studies on a sublittoral population of Aplysia pimctata. J. mar. biol. Ass. U.K., Vol. 47, pp. 335–50.CrossRefGoogle Scholar
Chibnall, A. C, Rees, M. W. & Williams, E. F., 1943. The total nitrogen content of egg albumin and other proteins. Biochem. J., Vol. 37, pp. 354–9.CrossRefGoogle ScholarPubMed
Conway, E. J. & O'malley, E., 1942. Microdiffusion methods. Ammonia and urea using buffered absorbents (Revised methods for ranges greater than 10 / μg N). Biochem. J., Vol. 36, pp. 655–61.CrossRefGoogle Scholar
Coulson, C. B., 1955. Plant proteins. V. Proteins and amino-acids of marine algae. J. Sci. Fd. Agric, Vol. 6, pp. 674–82.CrossRefGoogle Scholar
Cushing, D. H., 1955. Production and a pelagic fishery. Fishery Invest., Lond., Vol. 18, 104 pp.Google Scholar
Eales, N. B., 1921. Aplysia. L.M.B.C. Mem. typ. Br. mar. Pl. Anim., Vol. 24, 84 pp.Google Scholar
Garstang, W., 1890. A complete list of the opisthobranchiate Mollusca found at Plymouth; with further observations on their morphology, colours, and natural history. J. mar. biol. Ass. U.K., Vol. 1, pp. 399457.CrossRefGoogle Scholar
Hawk, P. B., Oser, B. L. & Summerson, W. H., 1954. Practical Physiological Chemistry. 1439 pp. London: J. and A. Churchill Ltd.Google Scholar
Howells, H. H., 1942. The structure and function of the alimentary canal of Aplysia punctata. Q. Jl microsc. Sci., Vol. 83, pp. 357–97.Google Scholar
Ino, T., 1952. Biological studies on the propagation of Japanese abalone (genus Haliotis). Bull. Tokai reg. Fish. Res. Lab., Vol. 5, pp. 1102.Google Scholar
Ino, T., 1958. Ecological studies of the topshell, Turbo cornutus (Solander). II. Relation between diet and coloration of the shell. Bull. Tokai reg. Fish. Res. Lab., Vol. 22, pp. 33–6.Google Scholar
Lasker, R. & Giese, A. C, 1954. Nutrition of the sea urchin, Strongylocentroms purpuratus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 106, pp. 328–40.CrossRefGoogle Scholar
Lewis, E. J. & Gonzalves, E. A., 1960. Amino acid contents of some marine algae from Bombay. New Phytol., Vol. 59, pp. 109–15.CrossRefGoogle Scholar
Lewis, E. J. & Gonzalves, E. A. 1962a. Periodic studies of the proteins, peptides, and free amino acids in Enteromorpha prolifera f. capillaris and Ulva lactuca var. rigida. Ann. Bot., Vol. 26, pp. 317–27.Google Scholar
Lewis, E. J. & Gonzalves, E. A. 1962b. The protein, peptide and free amino-acid contents of some species of marine algae from Bombay. Ann. Bot., Vol. 26, pp. 301–16.CrossRefGoogle Scholar
Lunde, G., 1937. Der Meerestang als Rohstoffquelle. Angew. Chem., Vol. 50, pp. 731–42.CrossRefGoogle Scholar
Mann, K. H., 1964. The pattern of energy flow in the fish and invertebrate fauna of the River Thames. Verh. int. Verein. theor. angew. Limnol., Vol. 15, pp. 485–95.Google Scholar
Mann, K. H., 1965. Energy transformations by a population of fish in the River Thames. J. Anim. Ecol., Vol. 34, pp. 253–75.CrossRefGoogle Scholar
Markham, R., 1942. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J., Vol. 36, pp. 790–1.CrossRefGoogle ScholarPubMed
Maynard, L. A. & Loosli, J. K., 1956. Animal Nutrition, 484 pp. New York: McGraw-Hill Book Co., Inc.Google Scholar
Mendel, L. B., 1904. Uber das Vorkommen von Taurin in den Muskeln von Weichtieren. Beitr. chem. Physiol. Path., Vol. 5, pp. 582.Google Scholar
Mendel, L. B. & Bradley, H. C, 1906. Experimental studies on the physiology of molluscs. Am. J. Physiol., Vol. 17, pp. 167–76.CrossRefGoogle Scholar
Odum, E. P., Connell, C. E. & Davenport, L. B., 1962. Population energy flow of three primary consumer components of old-field ecosystems. Ecology, Vol. 43, pp. 8896.CrossRefGoogle Scholar
Prosser, C. L. & Brown, F. A., 1961. Comparative Animal Physiology. 688 pp. London: W. B. Saunders Co.Google Scholar
Ryther, J. H., 1954. Inhibitory effects of phytoplankton upon the feeding of Daphnia magna with reference to growth, reproduction, and survival. Ecology, Vol. 35, pp. 522–33.CrossRefGoogle Scholar
Saito, Y. & Nakamura, N., 1961. Biology of the sea hare, Aplysia Juliana, as a predator of the brown seaweed, Undaria pinnatifida. I. The feeding habit. Bull. Jap. Soc. scient. Fish., Vol. 27, pp. 395400.CrossRefGoogle Scholar
Simpson, J. W., Allen, K. & Awapara, G., 1959. Free amino acids in some aquatic invertebrates. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 117, pp. 371–81.CrossRefGoogle Scholar
Swan, E. F., 1961. Some observations on the growth rate of sea urchins in the genus Strongylocentrotus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 120, pp. 420–7.CrossRefGoogle Scholar
Winkler, L. R. & Dawson, E. Y., 1963. Observations and experiments on the food habits of California sea hares of the genus Aplysia. Pacif. Set., Vol. 17, pp. 102–5.Google Scholar
Wort, D. J., 1955. The seasonal variation in chemical composition of Macrocystis integrifolia and Nereocystis luetkeana in British Columbia coastal waters. Can. J. Bot., Vol. 33, pp. 323–40.CrossRefGoogle Scholar
Yonge, C. M., 1949. The Sea Shore. 311 pp. London: Collins.Google Scholar