Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T06:48:02.980Z Has data issue: false hasContentIssue false

Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic

Published online by Cambridge University Press:  11 May 2009

David J. Patterson
Affiliation:
Department of Zoology, University of Bristol, Bristol, BS8 1UG.
Kari Nygaard
Affiliation:
NIVA, Brekkeveien 19, PB 69 Korsvoll, N 0808 Oslo, Norway.
Gero Steinberg
Affiliation:
Institut für Zellbiologie, Ludwig Maximilian Universität, Schillerstrasse 42, D 8000 München, Germany.
Carol M. Turley
Affiliation:
Department of Zoology, University of Bristol, Bristol, BS8 1UG. Plymouth Marine Laboratory, Citadel Hill, Plymouth, PL1 2PB.

Extract

Heterotrophic protists, mostly flagellates, encountered in association with marine detritus from various collections in the mid North Atlantic are described. About 40 species have been identified and are reported. Taxa reported here for the first time are: Caecitellus gen. nov. (Protista incertae sedis) and Ministeria marisola gen. nov., sp. nov. (Protista incertae sedis). The flagellates form a subset of the community of heterotrophic marine flagellates encountered in more productive marine sites. Most species are bacterivorous and small. The community extends to the ocean floor but the diversity is reduced in samples taken from greater depths. The decline in species diversity is linked also to a decline in numbers of individuals. We discuss these changes in relation to food supply and pressure effects.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alldredge, A. L. & Silver, M. W., 1988. Characteristics, dynamics and significance of marine snow. Progress in Oceanography, 20, 4182.CrossRefGoogle Scholar
Andersen, P., 1989. Functional biology of the choanoflagellate Diaphanoeca grandis Ellis. Marine Microbial Food Webs, 3, 3550.Google Scholar
Barnett, P. R. O., Watson, J. & Connelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanologica Acta, 7, 399408.Google Scholar
Berninger, U.-G., Caron, D. A., Sanders, R. W. & Finlay, B. J., 1991. Heterotrophic flagellates of planktonic communities, their characteristics and methods of study. In The biology of free-living heterotrophic flagellates (ed. Patterson, D. J. and Larsen, J.), pp. 3956. Oxford: Oxford University Press.Google Scholar
Biddanda, B. A. & Pomeroy, L. R., 1988. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Marine Ecology Progress Series, 42, 7988.CrossRefGoogle Scholar
Buck, K. R., Chavez, F. P. & Thomsen, H. A., 1991. Choanoflagellates of the central California waters: abundance and distribution. Ophelia, 33, 179186.CrossRefGoogle Scholar
Caron, D. A., 1991. Heterotrophic flagellates associated with sedimenting detritus. In The biology of free-living heterotrophic flagellates (ed. Patterson, D. J. and Larsen, J.), pp. 7792. Oxford: Oxford University Press.Google Scholar
Caron, D. A., Davis, P. G., Madin, L. P. & Sieburth, J. McN., 1982. Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates. Science, New York, 218, 795797.CrossRefGoogle ScholarPubMed
Ellis, W. N., 1929. Recent researches on the Choanoflagellata (Craspédomonadines) (freshwater and marine) with description of new genera and species. Annales de la Société Royale Zoologique de Belgique, 60, 4988.Google Scholar
Fenchel, T. & Patterson, D. J., 1988. Cafeteria roenbergensis nov. gen., nov. sp., a heterotrophic microflagellate from marine plankton. Marine Microbial Food Webs, 3, 919.Google Scholar
Gold, K., Pfister, R. M. & Liguori, V. R., 1970. Axenic cultivation and electron microscopy of two species of Choanoflagellida. Journal of Protozoology, 17, 210212.CrossRefGoogle Scholar
Goldman, J. C., 1984. Conceptual role for microaggregates in pelagic waters. Bulletin of Marine Science, 35, 462476.Google Scholar
Gooday, A. J. & Turley, C. M., 1990. Responses by benthic organisms to inputs of organic material to the ocean floor: a review. Philosophical Transactions of the Royal Society of London (A), 331, 119138.Google Scholar
Griessmann, K., 1913. Über marine Flagellaten, Archiv für Protistenkunde, 32 (1914), 178.Google Scholar
Hara, S. & Takahashi, E., 1984. Re-investigation of Polyoeca dichotoma and Acanthoeca spectabilis (Acanthoecidae: Choanoflagellida). Journal of the Marine Biological Association of the United Kingdom, 64, 819827.CrossRefGoogle Scholar
Hibberd, D. J., 1979. Notes on the ultrastructure of the genus Paraphysomonas (Chrysophyceae) with special reference to P. bandaiensis Takahashi. Archiv für Protistenkunde, 121, 146154.CrossRefGoogle Scholar
Kent, W. S., 1880. A manual of the infusoria. Vol. 1. London: D. Bogue.Google Scholar
Lampitt, R. S., 1985. Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Research, 32, 885897.CrossRefGoogle Scholar
Larsen, J., 1985. Ultrastructure and taxonomy of Actinomonas pusilla, a heterotrophic member of the Pedinellales (Chrysophyceae). British Phycological Journal, 20, 341355.CrossRefGoogle Scholar
Larsen, J. & Patterson, D. J., 1990. Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24, 801937.CrossRefGoogle Scholar
Leadbeater, B. S. C., 1972. Fine-structural observations on some marine choanoflagellates from the coast of Norway. Journal of the Marine Biological Association of the United Kingdom, 52, 6779.CrossRefGoogle Scholar
Lochte, K. & Turley, C. M., 1988. Bacteria and cyanobacteria associated with phytodetritus in the deep sea. Nature, London, 333, 6769.CrossRefGoogle Scholar
Lucas, I. A. N., 1967. Two new marine species of Paraphysomonas. Journal of the Marine Biological Association of the United Kingdom, 47, 329334.CrossRefGoogle Scholar
Manton, I., Bremer, G. & Oates, K., 1981. Problems of structure and biology in a large collared flagellate (Diaphanoeca grandis Ellis) from Arctic seas. Proceedings of the Royal Society, London (B), 213, 1526.Google Scholar
Manton, I. & Leadbeater, B. S. C., 1974. Fine-structural observations on six species of Chrysochromulina from wild Danish marine nanoplankton, including a description of C. campanulifera sp. nov. and a preliminary summary of the nanoplankton as a whole. Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, 20(5), 126.Google Scholar
Moestrup, Ø., 1979. Identification by electron microscopy of marine nanoplankton from New Zealand, including the description of four new species. New Zealand Journal of Botany, 17, 6195.CrossRefGoogle Scholar
Molina, F. I. & Nerad, T. A., 1991. Ultrastructure of Amastigomonas bermudensis ATCC 50234 sp. nov. - a new heterotrophic marine flagellate. European Journal of Protistology, 27, 386396.CrossRefGoogle Scholar
Mylnikov, A. P., 1990. Characteristic features of the ultrastructure of the colourless flagellate Heteromita sp. Tsitologiya, 32,567571. [In Russian.]Google Scholar
Norris, R. E., 1965. Neustonic marine Craspedomonadales (Choanoflagellates) from Washington and California. Journal of Protozoology, 12, 589602.CrossRefGoogle Scholar
Nygaard, K., Bersheim, K. Y., Thingstad, T. F., 1988. Grazing rates on bacteria by marine heterotrophic microflagellates compared to uptake rates of bacterial-sized monodisperse fluorescent latex beads. Marine Ecology Progress Series, 44, 159165.CrossRefGoogle Scholar
Patterson, D. J., 1982. Photomicrography using a dedicated electronic flash. Microscopy, 34, 437442.Google Scholar
Patterson, D. J., 1990. Jakoba libera (Ruinen, 1938), a heterotrophic flagellate from deep oceanic sediments. Journal of the Marine Biological Association of the United Kingdom, 70, 381393.CrossRefGoogle Scholar
Patterson, D. J. & Fenchel, T., 1985. Insights into the evolution of heliozoa (Protozoa, Sarcodina) as provided by ultrastructural studies on a new species of flagellate from the genus Pteridomonas. Biological Journal of the Linnean Society, 34, 381403.CrossRefGoogle Scholar
Patterson, D. J. & Fenchel, T., 1990. Massisteria marina Larsen & Patterson 1990, a widespread and abundant bacterivorous protist associated with marine detritus. Marine Ecology Progress Series, 62, 1119.CrossRefGoogle Scholar
Patterson, D. J. & Larsen, J. ed., 1991. The biology of free-living heterotrophic flagellates. Oxford: Oxford University Press.Google Scholar
Patterson, D. J., Larsen, J. & Corliss, J. O., 1989. The ecology of heterotrophic flagellates and ciliates living in marine sediments. Progress in Protistology, 3, 185277.Google Scholar
Patterson, D. J., & Zölffel, M., 1991. Heterotrophic flagellates of uncertain taxonomic position. In The biology of free-living heterotrophic flagellates (ed. Patterson, D. J. and Larsen, J.), pp. 427475. Oxford: Oxford University Press.Google Scholar
Pavillard, J., 1916. Flagellés nouveaux, épiphytes des diatomées pélagiques. Comptes Rendu de l'Academie des Sciences, Paris, 163, 6568.Google Scholar
Pennick, N. C. & Clarke, K. J., 1972. Paraphysomonas butcheri sp. nov. a marine, colourless, scalebearing member of the Chrysophyceae. British Phycological Journal, 7, 4548.CrossRefGoogle Scholar
Preisig, H. R. & Hibberd, D. J., 1982 a. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera, 1. Nordic Journal of Botany, 2, 397420.Google Scholar
Preisig, H. R. & Hibberd, D. J., 1982 b. Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera, 2. Nordic Journal of Botany, 2, 601638.CrossRefGoogle Scholar
Rice, A. L., Billett, D. S. M., Fry, J., John, A. W. G., Lampitt, R. S., Mantoura, R. F. C., & Morris, R. J., 1986. Seasonal deposition of phytodetritus to the deep-sea floor. Proceedings of the Royal Society of Edinburgh. B, 88, 265279.Google Scholar
Scagel, R. F. & Stein, J. R., 1961. Marine nanoplankton from a British Columbia Fjord. Canadian Journal of Botany, 39, 12051213.CrossRefGoogle Scholar
Schiller, J., 1933. Dinoflagellatae (Peridineae). In Kryptogamenflora vol. 10 (ed. Rabenhorst, L.), pp. 3. Leipzig: Akademische Verlaggesellschaft.Google Scholar
Sherr, B. F., Sherr, E. B. & Berman, T., 1982. Decomposition of organic detritus: a selective role for microflagellate protozoa. Limnology and Oceanography, 27, 765769.CrossRefGoogle Scholar
Siemensma, F. J. & Roijackers, R. M. M., 1988. A study of new and little-known acanthocystid heliozoans, and a proposed division of the genus Acanthocystis (Actinopoda, Heliozoea) Archiv für Protistenkunde, 135, 197212.CrossRefGoogle Scholar
Silver, M. W., Gowing, M. M., Brownlee, D. C. & Corliss, J. O., 1984. Ciliated protozoa associated with oceanic sinking detritus. Nature, London, 309, 246248.CrossRefGoogle Scholar
Skuja, H., 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsaliensis, 9, 1399.Google Scholar
Sournia, A., 1986. Atlas du phytoplancton marin, vol. 1. Introduction, cyanophycées, dictochophycées, dinophycées et raphidophycées. Paris: CNRS.Google Scholar
Takahashi, E., 1976. Studies on genera Mallomonas and Synura, and other plankton in fresh-water with the electron microscope. X. The genus Paraphysomonas (Chrysophyceae) in Japan. British Phycological Journal, 11, 3948.CrossRefGoogle Scholar
Takahashi, E., 1987. Loricate and scale-bearing protists from Lützow-Holm Bay, Antarctica. II. Four marine species of Paraphysomonas (Crysophyceae) including two new species from the fast-ice covered coastal area. Japanese Journal of Phycology, 35, 155166.Google Scholar
Taylor, F. J. R., 1982. Symbioses in marine microplankton. Annales de l'institut Océanographiaue, Monaco, 58 (supplement), 6190.Google Scholar
Taylor, G. T., Karl, D. M. & Pace, M. L., 1986. Impact of bacteria and zooflagellates on the composition of sinking particles: an in situ experiment. Marine Ecology Progress Series, 29, 141155.CrossRefGoogle Scholar
Thiel, H.et al., 1988/1989. Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biological Oceanography, 6, 203239.Google Scholar
Thomsen, H. A., 1973. Studies on marine choanoflagellates. I. Silicified choanoflagellates of the Isefjord (Denmark). Ophelia, 12, 126.CrossRefGoogle Scholar
Thomsen, H. A., 1975. An ultrastructural survey of the chrysophycean genus Paraphysomonas under natural conditions. British Phycological Journal, 10, 113127.CrossRefGoogle Scholar
Thomsen, H. A. & Buck, K. R., 1991. Choanoflagellate diversity with particular emphasis on the Acanthoecidae. In The biology of free-living heterotrophic flagellates (ed. Patterson, D.J. and Larsen, J.), pp. 259284. Oxford: Oxford University Press.Google Scholar
Throndsen, J., 1969. Flagellates of Norwegian coastal waters. Nytt Magasin for Botanikk, 16, 161216.Google Scholar
Throndsen, J., 1970 a. Marine planktonic acanthoecaceans (Craspedophyceae) from Arctic Waters. Nytt Magasin for Botanikk, 17, 103111.Google Scholar
Throndsen, J., 1970 b. Salpingoeca spinifera sp. nov., a new planktonic species of the Craspedophyceae recorded in the Arctic. British Phycological Journal, 5, 8789.CrossRefGoogle Scholar
Throndsen, J., 1974. Planktonic choanoflagellates from North Atlantic waters. Sarsia, 56, 95122.CrossRefGoogle Scholar
Tobiesen, A., 1991. Growth rates of Heterophrys marina (Heliozoa) on Chrysochromulina polylepis (Prymnesiophyceae). Ophelia, 33, 205212.CrossRefGoogle Scholar
Turley, C. M., 1991. Protozoa associated with ‘snow’ and ‘fluff - session summary. In Protozoa and their role in marine processes (ed. Reid, P. C.et al.), pp. 309326. Heidelberg: Springer Verlag. [NATO ASI Series G25.]CrossRefGoogle Scholar
Turley, C. M. & Carstens, M., 1991. Pressure tolerance of oceanic flagellates: implications for remineralization of organic matter. Deep-Sea Research, 38, 403413.CrossRefGoogle Scholar
Turley, C. M. & Hughes, D. J., 1992. Effects of storage on direct estimates of bacterial numbers of preserved seawater samples. Deep-Sea Research, 39, 375394.CrossRefGoogle Scholar
Turley, C. M. & Lochte, K., 1990. Microbial response to the input of fresh detritus to the deep-sea bed. Palaeogeography, Palaeoclimatology, Palaeoecology including Global and Planetary Change, 89, 323.CrossRefGoogle Scholar
Turley, C. M., Lochte, K. & Patterson, D. J., 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Research, 35, 10791092.CrossRefGoogle Scholar
Vørs, N., 1992 a. Heterotrophic amoebae, flagellates and heliozoa from the Tvärminne area, Gulf of Finland, in 1988–1990. Ophelia, 36, 1109.CrossRefGoogle Scholar
Vørs, N. 1992 b. Ultrastrucrure and autecology of the marine, heterotrophic flagellate Leucocryptos marina (Braarud) Butcher 1967 (Katablepharidaceae/Kathablepharidae), with a discussion of the genera Leucocryptos and Katablepharis/Kathablepharis. European Journal of Protistology, 28, 369389.CrossRefGoogle ScholarPubMed
Vørs, N., 1992 c. Heterotrophic amoebae, flagellates and heliozoa from Arctic marine waters (N.W.T. Canada and West Greenland). Polar Biology, in press.Google Scholar
Vørs, N., 1992 d. Marine heterotrophic amoebae, flagellates and heliozoa from Belize (Central America) and Tenerife (Canary Islands) with descriptions of new species Luffisphaera bulbochaete n. sp., L. longihastis n. sp., L. turriformis n. sp. and Paulinella intermedia n. sp. Journal of Protozoology, in press.CrossRefGoogle Scholar
Vørs, N., Johansen, B. & Havskum, H., 1990. Electron microscopical observations on some species of Paraphysomonas (Chrysophyceae) from Danish lakes and ponds. Nova Hedwigia, 50, 337354.Google Scholar