Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T01:02:41.540Z Has data issue: false hasContentIssue false

Hydroid Pigments. I. General discussion and pigments of the Sertulariidæ

Published online by Cambridge University Press:  11 May 2009

Extract

1. The yellow colours of the hydroids include at least two groups, the carotinoids found in the Antennulariidæ and Haliciidæ and the flavone-like pigments that occur in the Sertulariidæ. From the literature a third group, the uradines, may be added.

2. The flavone pigments and their relatives are all water soluble and are thus distinguished from the carotinoids which are not water soluble, but may be dissolved in the usual fat solvents.

3. In the Sertulariidæ studied, a graded series of chromatophore groups and pigments was found which ranged from the colourless species Sertularia argentea Ellis and Solander, through the yellow of Sertularella gayi Lamaroux and S. polyzonias Linnæus, to the orange-brown of Thuiaria articulata Pallas. The brown of Sertularia pumila is probably also a flavone derivative.

4. The flavones and related pigments occur extensively in the plant kingdom. It is probable that the flavone-like pigments found in the Sertulariidæ are of plant origin.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1931

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1882. Blanchard, Raphaël. Note sur la matière bleue du rhizostome de Cuvier. Bull. Soc. Zool. de France, 7, 402404.Google Scholar
1880. Colasanti, J. Il pigmento blu' delle idromedusæ. Atti acad. Med. Roma Anno 12, 18 pp.Google Scholar
1920. Elmhirst, R., and Sharpe, J.On the colours of the two sea-anemones, Actinia equina and Anemonia sulcata. I. Environmental (Elmhirst) II. Chemical (Sharpe). Biochem. Journ., 14, 4857, 2 pl.CrossRefGoogle ScholarPubMed
1889. Fewkes, J. Walter. On a method of defence among certain Medusæ. Annals and Magazine of Natural History, 4, 342350. Also published in Proc. Boston Soc. Nat. Hist., 34, 200–208.Google Scholar
1903. Fürth, Otto von. Vergleichende chemische Physiologie der niederen Tiere. Gustav Fischer, Jena, 670 pp.Google Scholar
1922. Fulton, J. F. jr, Animal chlorophyll. Its relation to hæmoglobin and to other animal pigments. Quart. Journ. Microscop. Sci., 66 (N.S.), 339396.Google Scholar
1882. Geddes, Patrick. Further researches on animals containing chlorophyll. Nature, 303305.CrossRefGoogle Scholar
1892. Griffiths, A. B.Physiology of the Invertebrata. Reeve and Co. London, 477 pp. See pp. 209–219.Google Scholar
1895. Griffiths, A. B., et Platt, C.Sur la composition de la pélagéine. Compt. Rend. Soc. Biol. (Paris), 121, 451452.Google Scholar
1926. Haurowitz, Felix, und Waelsch, Heinrich. Über die chemische Zusammensetzung der Qualle Vellela spirans. Hoppe-Seylers Zeitschr. f. Physiol. Chem. 161: 300317.Google Scholar
1931. Kropp, Benjamin. The pigment of Vellela spirans and Fiona marina. Biol. Bull. 60, 120123.CrossRefGoogle Scholar
1880. Kruckenberg, C. Fr. W. Das Antheagrün. In Vergleichende physiologische Studien. 1. Reihe, 5. Abt., 3842, Carl Winter. Heidelberg.Google Scholar
1882. Kruckenberg, C. Fr. W. Die Pigmente. In Vergleichende physiologische Studien. 2. Reihe, 3. Abt., 1. Ueber das Cyanëin, 2. Beitrage zur Kenntnis der Aktinienfarbstoffe, 7273, Carl Winter. Heidelberg.Google Scholar
1873. Lankaster, E. Ray. The colouring matter of Stentor cœruleus. Quart. Journ. Microscop. Sci., 13, 193–142.Google Scholar
1898. Liversidge, A. The blue pigment in coral (Helipora coarulea) and other animal organisms. Journ. Roy. Soc. New South Wales, 32, 256268.Google Scholar
1881. M'Kendrick, . On the colouring matter of jelly-fishes. Jour. Anat. and Physiol., 15, 261264.Google Scholar
1885. MacMunn, C. A. Observations on the chromatology of Actiniæ. Philosoph. Trans. Roy. Soc. London, 176, 641663.Google Scholar
1890. MacMunn, C. A.Contributions to animal chromatology. Quart. Jour. Microscop. Sci., 30 (N.S.), 5196.Google Scholar
1885. MacMunn, C. A.On the chromatology of the blood of some invertebrates. Quart. Jour. Microscopical Sci., 25 (N.S.), 469490.Google Scholar
1873. Moseley, H. N.On Antinochrom, a colouring matter of Actinias which gives an absorption spectrum. Quart. Jour. Microscop. Sci., 13, N.S. 143144.Google Scholar
1877. Moseley, H. N.On the colouring matter of various animals and especially of the deep-sea forms dredged by H.M.S. Challenger. Quart. Jour. Microscop. Sci., 17 (N.S.), 123.Google Scholar
1922. Palmer, Leroy S. Carotinoids and related pigments. The chromolipoids. Chemical Catalogue Company, New York, 316 pp.Google Scholar
1924. PalmerLeroy, S. Leroy, S., and Knight, Harry H.Carotin the principal cause of the red and yellow colours in Perillus bioculatus (Fab.) and its biological origin from the lymph of Leptinotarsa decimlineata (Say). Jour. Biol. Chem., 59, 443449.CrossRefGoogle Scholar
1925. Schertz, F. M.Some physical and chemical properties of Xanthophyll and the properties of the pure pigment. Jour. Agri. Res., 30, 575585.Google Scholar
1925. Schertz, F. M.Some physical and chemical properties of carotin and the preparation of the pure pigment. Jour. Agri. Res., 30, 469474.Google Scholar
1925. Teissier, Georges. Changement de coloration des embryones de Clava squamata au cours de l'ontogenése. Travaux de la Stat. biol. de Wimeraux, 9; also published in Compt. Rend. Congrès de l'Avanc. de Sci., 48e, Session Liège, 481–482.Google Scholar
1916. Wheldale, Muriel. The anthocyanin pigments of plants. Cambridge University Press, 318+xiii pp.Google Scholar