Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T07:11:46.312Z Has data issue: false hasContentIssue false

Iheyaspira bathycodon new species (Vetigastropoda: Trochoidea: Turbinidae: Skeneinae) from the Von Damm Vent Field, Mid-Cayman Spreading Centre, Caribbean

Published online by Cambridge University Press:  13 August 2012

Verity Nye*
Affiliation:
Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Jon Copley
Affiliation:
Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK
Katrin Linse
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
Sophie Plouviez
Affiliation:
Nicholas School of the Environment, Duke University Marine Laboratory, 135, Duke Marine Lab Road, Beaufort, NC 28516, USA
*
Correspondence should be addressed to: V. Nye, Ocean & Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, European Way, Southampton, SO14 3ZH, UK email: vn205@noc.soton.ac.uk

Abstract

Iheyaspira bathycodon sp. nov. is described from the Von Damm Vent Field on the world's deepest spreading centre, the Mid-Cayman Spreading Centre (MCSC), Caribbean, at 2300 m depth. The new species is defined and illustrated from 11 specimens, with brief notes on habitat and known distribution. Molecular phylogenetic data from partial COI mDNA, 16S rDNA and nuclear 18S rDNA regions are used to analyse the species’ phylogenetic position and its morphology is compared with previously described skeneid and vent taxa. The new species is distinguished from the most closely allied vent species, Iheyaspira lequios Okutani, Sasaki & Tsuchida, 2000 by morphological differences in radula diagnosis and appendage structure of the head-foot. Iheyaspira bathycodon sp. nov. is the tenth turbinid to be described from a hydrothermal-vent environment and the second species to be named from recently discovered hydrothermal vents on the MCSC. Determining the faunal composition of assemblages at the vent fields of the MCSC will help to elucidate the vent biogeography of the region.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bouchet, P. (2010a) Iheyaspira Okutani, Sasaki & Tsuchida, 2000. In Bouchet, P., Gofas, S. and Rosenberg, G. (eds) World marine Mollusca database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=456431 on 17 December 2012.Google Scholar
Bouchet, P. (2010b) Fucaria Warén & Bouchet, 1993. In Bouchet, P., Gofas, S. and Rosenberg, G. (eds) World marine Mollusca database. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=456416 on 17 December 2012.Google Scholar
Bouchet, P., Racroi, J.P., Fryda, J., Hausdorf, B., Ponder, W., Valdes, A. and Warén, A. (2005) Classification and nomenclature of gastropod families. Malacologia 47, 1368.Google Scholar
Clark, W. (1851) On the classification of the British marine testaceous Mollusca. Annals and Magazine of Natural History 2, 469482.Google Scholar
Connelly, D.P., Copley, J.T., Murton, B.J., Stansfield, K., Tyler, P.A., German, C.R., Van Dover, C.L., Amon, D., Furlong, M., Grindlay, N., Hayman, N., Hühnerbach, V., Judge, M., Le Bas, T., McPhail, S., Meier, A., Nakamura, K-I, Nye, V., Pebody, M., Pedersen, R.B., Plouviez, S., Sands, C., Searle, R.C., Taws, S. and Wilcox, S. (2012) Hydrothermal vent fields and chemosynthetic biota on the world's deepest seafloor spreading centre. Nature Communications. doi: 10.1038/ncomms1636.CrossRefGoogle ScholarPubMed
Cossmann, M. (1917) In Cossman M. and Payrot A. (1917–1919). Conchologie néogénique de l'Aquitaine. Tome 3. Gastropodes, Scaphopodes et Amphineures. Bordeaux: Actes de la Société Linnéenne de Bordeaux, p. 354.Google Scholar
Dall, W.H. (1889) Reports on the results of dredgings, under the supervision of Alexander Agassiz, in the Gulf of Mexico (1877–78) and in the Caribbean Sea (1879–80), by the U.S. Coast Survey Steamer ‘Blake'. Bulletin of the Museum of Comparative Zoology 18, 1492.Google Scholar
Desbruyères, D., Alayse-Danet, A.-M., Ohta, S.and the Scientific Parties of BIOLAU and STARMER Cruises (1994) Deep-sea hydrothermal communities in south-western Pacific back-arc basins (the North Fiji and Lau Basins): composition, microdistribution and food web. Marine Geology 116, 227242.CrossRefGoogle Scholar
Doyle, J.J. and Dickson, E. (1987) Preservation of plant samples from DNA restriction endonuclease analysis. Taxon 36, 715722.CrossRefGoogle Scholar
Fabri, M.-C., Bargain, A., Briand, P., Gebruk, A., Fouquet, Y., Morineaux, M. and Desbruyères, D. (2011) The hydrothermal vent community of a new deep-sea field, Ahasze-1, 12°58′N on the Mid-Atlantic Ridge. Journal of the Marine Biological Association of the United Kingdom 91, 113.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Galkin, S.V. (1997) Megafauna associated with hydrothermal vents in the Manus Back-Arc Basin (Bismarck Sea). Marine Geology 142, 197206.CrossRefGoogle Scholar
Hickman, C.S. and McLean, J.H. (1990) Systematic revision and suprageneric classification of trochacean gastropods. Natural History Museum of Los Angeles County Science Series 35, 177.Google Scholar
Jeffreys, J.G. (1883) On the mollusca procured during the ‘Lightning’ and ‘Porcupine’ Expeditions, 1868–1870. Part 6. Proceedings of the Zoological Society of London 1883, 88115.CrossRefGoogle Scholar
Jukes, T.H. and Cantor, C.R. (1969) Evolution of protein molecules. In Munro, H.N. (ed.) Mammalian protein metabolism. New York: Academic Press, pp. 21132.CrossRefGoogle Scholar
Kano, Y. (2008) Vetigastropod phylogeny and a new concept of Seguenzioidea: independent evolution of copulatory organs in the deep-sea habitats. Zoologica Scripta 37, 121.CrossRefGoogle Scholar
Kiel, S. (2004) Shell structures of selected gastropods from hydrothermal vents and seeps. Malacologia 46, 169183.Google Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kojima, S., Segawa, R., Fijiwara, Y., Fujikura, K., Ohta, S. and Hashimoto, J. (2001) Phylogeny of hydrothermal-vent endemic gastropods Alvinoconcha spp. from the western Pacific revealed by mitochondrial DNA sequences. Biological Bulletin. Marine Biological Laboratory, Woods Hole 200, 298304.CrossRefGoogle Scholar
Nye, V., Copley, J. and Plouviez, S. (2012) A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean. Journal of the Marine Biological Association of the United Kingdom. doi: 10.1017/S0025315411002001.CrossRefGoogle Scholar
Okutani, T., Tsuchida, E. and Fujikura, K. (1992) Five bathyal gastropods living within or near the Calyptogena community of the Hatsushima Islet, Sagami Bay. Venus 51, 137148.Google Scholar
Okutani, T., Sasaki, T. and Tsuchida, T. (2000) Two additional new species to gastropod fauna of chemosynthetic site on North Knoll of Iheya Ridge, Okinawa Trough. Venus 59, 267275.Google Scholar
Okutani, T., Hashimoto, J. and Sasaki, T. (2004) New gastropod taxa from hydrothermal vent (Kairei Field) in the central Indian Ocean. Venus 63, 111.Google Scholar
Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In Hillis, D.M., Moritz, C. and Mable, B.K. (eds) Molecular systematics. Sunderland, MA: Sinauer Associates, pp. 204247.Google Scholar
Rafinesque, C.S. (1815) Analyse de la nature ou tableau de l'universe et des corps organisées. Palermo: L'Imprimerie de Jean Barravecchia.Google Scholar
Saitou, N. and Nei, M. (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Salvini-Plawen, L.v. (1980) A reconsideration of systematics in the Mollusca (phylogeny and higher classification). Malacologica 19, 249278.Google Scholar
Sasaki, T., Okuntani, T. and Fujikura, K. (2005) Molluscs from hydrothermal vents and cold seeps in Japan: a review of taxa recorded in twenty recent years (1984–2004). Venus 64, 97133.Google Scholar
Sasaki, T., Warén, A., Kano, Y., Okutani, T. and Fujikura, K. (2010) Gastropods from recent hot vents and cold seeps: systematics, diversity and life strategies. Topics in Geobiology 33, 169254.CrossRefGoogle Scholar
Swainson, W. (1840) A treatise on malacology; or the natural classification of shells and shellfish. London: Lardner's Cabinet Cyclopedia.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution. doi:10.1093/molbev/msr121.CrossRefGoogle ScholarPubMed
Tao, C., Lin, J., Guo, S., Chen, Y.J., Wu, G., Han, X., German, C.R., Yoerger, D.R., Zhou, N., Li, H., Su, X.and the DY 115-19 (Legs 1–2) and DY115-20 (Legs 4–7) Science Parties (2012) First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology 40, 4750.CrossRefGoogle Scholar
Thiel, J. (1924) Handbuch der Zoologie 5, Mollusca. Berlin: Walter de Gruyter.Google Scholar
Van Dover, C.L., Humphris, S.E., Fornari, D., Cavanaugh, C.M., Collier, R., Goffredi, S.K., Hashimoto, J., Lilley, M.D., Reysenbach, A.L., Shank, T.M., Von Damm, K.L., Banta, A., Gallant, R.M., Gotz, D., Green, D., Hall, J., Harmer, T.L., Hurtado, L.A., Johnson, P., McKiness, Z.P., Meredith, C., Olson, E., Pan, I.L., Turnipseed, M., Won, Y., Young, C.R. and Vrijenhoek, R.C. (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818823.CrossRefGoogle ScholarPubMed
Vilvens, C. and Sellanes, J. (2006) Descriptions of Otukaia crustulum new species (Gastropoda: Trochoidea: Calliostomatidae) and Margarites huloti new species (Gastropoda: Trochoidea: Trochidae) from a methane seep area off Chile. Nautilus 120, 1520.Google Scholar
Warén, A. (1996) New and little known Mollusca from Iceland and Scandinavia, part 3. Sarsia 81, 197245.CrossRefGoogle Scholar
Warén, A. and Bouchet, P. (1989) New gastropods from East Pacific hydrothermal vents. Zoologica Scripta 18, 67102.CrossRefGoogle Scholar
Warén, A. and Bouchet, P. (1993) New records, species, genera and a new family of gastropods from hydrothermal vents and hydrocarbon cold seeps. Zoologica Scripta 22, 190.CrossRefGoogle Scholar
Warén, A. and Bouchet, P. (2001) Gastropoda and monoplacophora from hydrothermal vents and seeps: new taxa and records. Veliger 44, 116231.Google Scholar
Warén, A., Bouchet, P. and von Cosel, R. (2006) Gastropoda. In Desbruyères, D., Segonzac, M. and Bright, M. (eds) Handbook of deep-sea hydrothermal vent fauna. Vienna: Biologiezentrum der Oberosterreichische Landesmuseen, pp. 82140.Google Scholar
Williams, S.T., Karube, S. and Ozawa, T. (2008) Molecular systematics of Vetigastropoda: Trochidae, Turbinidae and Trochoidea redefined. Zoologica Scripta 37, 483506.CrossRefGoogle Scholar
Williams, S.T. (in press) Advances in systematics of the vestigastropod superfamily Trochoidea. Zoologica Scripta.Google Scholar