Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T04:11:14.826Z Has data issue: false hasContentIssue false

Influence of a narrow depth gradient and season on the morphology, phenology, and epibiosis of the brown alga Sargassum cymosum

Published online by Cambridge University Press:  09 December 2010

G.B. Jacobucci*
Affiliation:
Instituto de Biologia, Universidade Federal de Uberlândia, 38400-902, Uberlândia, MG, Brazil
A.Z. Güth
Affiliation:
Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
A. Turra
Affiliation:
Departamento de Oceanografia Biológica, Instituto Oceanográfico, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
F.P.P. Leite
Affiliation:
Departamento de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil
*
Correspondence should be addressed to: G.B. Jacobucci, Instituto de Biologia, Universidade Federal de Uberlândia, 38400-902, Uberlândia, MG, Brazil email: jacobucci@inbio.ufu.br

Abstract

Temporal and spatial fluctuations of environmental parameters are normally assigned as causes of variations in morpho-phenological characters of seaweeds and in their epibionts, but formal tests of such hypotheses are lacking, especially in narrow gradients. The present study evaluated the influence of a very small depth gradient (1 to 3 m) and of subtle seasonality characteristic of tropical areas on morpho-phenological traits and on the occurrence of sessile epiphytic organisms using a controlled orthogonal sampling design in a sublittoral population of the tropical brown alga Sargassum cymosum. Four temporal samples were obtained over a one-year period at three depths using nine replicates. The wet weight, maximum length, number of primary and secondary branches, and proportion of secondary branches with receptacles were recorded. Epibiosis was estimated by visual evaluation of percentage cover on secondary branches. Algal morphology varied as a function of the period of the year (weaker effect) and depth (stronger effect) but in different ways for each variable analysed. In general, fronds tended to be shorter, heavier, and more ramified in shallower areas. In relation to time, the morphological characters tended mostly to present higher values in January (summer) and/or April (autumn). Frequency of receptacles did not depend on algal morphology and depth at all but varied in time, although only in the deepest area. Epibiosis also did not depend on algal morphology but varied in relation to time (stronger effect) and, to a lesser extent, depth (weaker effect). The effect of time upon epibiosis also depended on the biological group analysed. These data support the hypothesis that algal morphology varies in relation to period of the year and depth, even under small temporal and spatial environmenal gradients.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Almada, C.H.B.A., Yoneshigue-Valentin, Y. and Nassar, C.A.G. (2008) Aspectos populacionais de Sargassum vulgare Agardh (Chrophyta, Fucales) na Ponta do Arpoador—Rio de Janeiro. Oecologia Brasiliensis 12, 291298.Google Scholar
Ang, P.O. (2006) Phenology of Sargassum spp. in Tung Ping Chau Marine Park, Hong Kong SAR, China. Journal of Applied Phycology 18, 629636.CrossRefGoogle Scholar
Arrontes, J. (1990) Composition, distribution on host, and seasonality of epiphytes on three intertidal algae. Botanica Marina 33, 205211.CrossRefGoogle Scholar
Ateweberhan, M., Bruggemann, J.H. and Breeman, A.M. (2005) Seasonal dynamics of Sargassum ilicifolium (Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Marine Ecology Progress Series 292, 159171.CrossRefGoogle Scholar
Blanchette, C.A. (1997) Size and survival of intertidal plants in response to wave action: a case study with Fucus gardneri. Ecology 78, 15631578.CrossRefGoogle Scholar
Boero, F. and Fresi, E. (1986) Zonation and evolution of a rocky bottom hydroid community. Marine Ecology 7, 123150.CrossRefGoogle Scholar
Borowitzka, M.A., Lethbridge, R.C. and Charlton, L. (1990) Species richness, spatial distribution and colonisation pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. Marine Ecology Progress Series 64, 281291.CrossRefGoogle Scholar
Bravin, I.C. and Yoneshigue-Valentin, Y. (2002) Influência de fatores ambientais sobre o crescimento in vitro de Hypnea musciformis (Wulfen) Lamouroux (Rhodophyta). Revista Brasileira de Botânica 25, 469474.Google Scholar
Chemello, R. and Milazzo, M. (2002) Effect of algal architecture on associated fauna: some evidences from phytal molluscs. Marine Biology 140, 981990.Google Scholar
Clarke, K.R. and Warwick, R.M. (2001) Change in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: PRIMER E. Limited.Google Scholar
Costa, O.S. Jr, Attrill, M.J., Pedrini, A.G. and De-Paula, J.C. (2002) Spatial and seasonal distribution of seaweeds on coral reefs from southern Bahia, Brazil. Botanica Marina 45, 346355.CrossRefGoogle Scholar
Cronin, G. and Hay, M.E. (1996) Effects of light and nutrient availability on the growth, secondary chemistry, and resistance to herbivory of two brown seaweeds. Oikos 77, 93106.CrossRefGoogle Scholar
Dahms, H.U., Harder, T. and Qian, P.Y. (2004) Effect of meiofauna on macrofauna recruitment: settlement inhibition of the polychaete Hydroides elegans by the harpacticoid copepod Tisbe japonica. Journal of Experimental Marine Biology and Ecology 311, 4761.CrossRefGoogle Scholar
Denny, M. and Gaylord, B. (2002) The mechanics of wave-swept algae. Journal of Experimental Biology 205, 13551362.CrossRefGoogle ScholarPubMed
De Ruyter van Steveninck, E.D. and Breeman, A.M. (1987) Population dynamics of a tropical intertidal and deep-water population of Sargassum polyceratium (Phaeophyceae). Aquatic Botany 29, 139156.CrossRefGoogle Scholar
De Wreede, R.E. (1976) The phenology of three species of Sargassum (Sargassaceae, Phaeophyta) in Hawaii. Phycologia 15, 175183.CrossRefGoogle Scholar
Díez, I., Santolaria, A. and Gorostiaga, J.M. (2003) The relationship of environmental factors to the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N Spain). Estuarine, Coastal and Shelf Science 56, 10411054.CrossRefGoogle Scholar
Duffy, J.E. and Hay, M.E. (2000) Strong impacts of grazing amphipods on the organization of a benthic community. Ecological Monographs 70, 237263.CrossRefGoogle Scholar
Engelen, A.H., Breeman, A.M., Olsen, J.L., Stam, W.T. and Aberg, P. (2005a) Life history flexibility allows Sargassum polyceratium to persist in different environments subjected to stochastic disturbance events. Coral Reefs 24, 670680.CrossRefGoogle Scholar
Engelen, A.H., Aberg, P., Olsen, J.L., Stam, W.T. and Breeman, A.M. (2005b) Effects of wave exposure and depth on biomass, density and fertility of the fucoid seaweed Sargassum polyceratium. European Journal of Phycology 40, 149158.CrossRefGoogle Scholar
Fraschetti, S., Terlizzi, A., Bevilacqua, S. and Boero, F. (2006) The distribution of hydroids (Cnidaria, Hydrozoa) from micro- to macro-scale: spatial patterns on habitat-forming algae. Journal of Experimental Marine Biology and Ecology 339, 148158.CrossRefGoogle Scholar
Garrabou, J., Ballesteros, E. and Zabala, M. (2002) Structure and dynamics of north-western Mediterranean rocky benthic communities along a depth gradient. Estuarine, Coastal and Shelf Science 55, 493508.CrossRefGoogle Scholar
Gillespie, R.D. and Critchley, A.T. (1999) Phenology of Sargassum spp. (Sargassaceae, Phaeophyta) from Reunion Rocks, KwaZulu-Natal, South Africa. Hydrobiologia 398–399, 201210.CrossRefGoogle Scholar
Gillespie, R.D. and Critchley, A.T. (2001) Reproductive allocation strategy of Sargassum elegans Suhr and Sargassum incisifolium (Turner) C. Agardh from Reunion Rock, KwaZulu-Natal, South Africa. Botanica Marina 44, 231235.CrossRefGoogle Scholar
Glenn, E.P., Smith, C.M. and Doty, M.S. (1990) Influence of antecedent water temperatures on standing crop of Sargassum spp.-dominated reef flat in Hawaii. Marine Biology 105, 323328.CrossRefGoogle Scholar
Graham, L.E. and Wilcox, L.W. (2000) Algae. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
Hanisak, M.D. and Samuel, M.A. (1987) Growth rates in culture of several species of Sargassum from Florida, USA. Hydrobiologia 151–152, 399404.CrossRefGoogle Scholar
Hawkins, S.J., Hartnoll, R.G., Kain, J.M. and Norton, T.A. (1992) Plant–animal interactions on hard substrata in the north-east Atlantic. In John, D.M. and Price, J.H. (eds) Plant–animal interactions in the marine benthos. Systematics Association Special Volume No. 46. Oxford: Clarendon Press, pp. 132.Google Scholar
Heck, K.L. Jr and Wetstone, G.S. (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. Journal of Biogeography 4, 135142.CrossRefGoogle Scholar
Jacobucci, G.B. (2000) Distribuição vertical e flutuação sazonal da macrofauna vágil associada a Sargassum cymosum C. Agardh, em uma praia do litoral norte do estado de São Paulo. Msc dissertation. Universidade Estadual de Campinas, Campinas, Brazil.Google Scholar
Jacobucci, G.B., Tanaka, M.O. and Leite, F.P.P. (2009) Factors influencing temporal variation of Sargassum filipendula (Phaeophyta: Fucales) bed in a subtropical shore. Journal of the Marine Biological Association of the United Kingdom 89, 315321.CrossRefGoogle Scholar
Jernakoff, P., Brearley, A. and Nielsen, J. (1996) Factors affecting grazer–epiphyte interactions in temperate seagrass meadows. Oceanography and Marine Biology: an Annual Review 34, 109162.Google Scholar
Krapp-Schickel, G. (1993) Do algal dwelling amphipods react to the ‘critical zones’ of a coastal slope? Journal of Natural History 27, 883900.CrossRefGoogle Scholar
Martin-Smith, K.M. (1993) The phenology of four species of Sargassum at Magnetic Island, Australia. Botanica Marina 36, 327334.CrossRefGoogle Scholar
McCourt, R.M. (1984) Seasonal patterns of abundance, distributions, and phenology in relation to growth strategies of three Sargassum species. Journal of Experimental Marine Biology and Ecology 74, 141156.CrossRefGoogle Scholar
McCourt, R.M. (1985) Reproductive biomass allocation in three Sargassum species. Oecologia 67, 113117.CrossRefGoogle ScholarPubMed
Moore, K.A. and Wetzel, R.L. (2000) Seasonal variations in eelgrass (Zostera marina L.) responses to nutrient enrichment and reduced light availability in experimental ecosystems. Journal of Experimental Marine Biology and Ecology 244, 128.CrossRefGoogle Scholar
Moore, K.A., Wetzel, R.L. and Orth, R.J. (1997) Seasonal pulses of turbidity and their relations to eelgrass (Zostera marina L.) survival in an estuary. Journal of Experimental Marine Biology and Ecology 215, 115134.CrossRefGoogle Scholar
Negreiros-Fransozo, M., Franzoso, A., Pinheiro, M.A.A., Mantelatto, F.L.M. and Santos, S. (1991) Caracterização física e química da Enseada da Fortaleza, Ubatuba, SP. Revista Brasileira de Geociências 21, 114120.CrossRefGoogle Scholar
Oliveira, O.M.P., Marques, A.C. and Migotto, A.E. (2006) Chave de identificação dos hidróides (Cnidaria, Hydrozoa) epifíticos do Canal de São Sebastião (SE, Brasil). Biota Neotropica 62, 118.Google Scholar
Paula, E.J. (1988) O gênero Sargassum C. AG. (Phaeophyta–Fucales) no litoral do Estado de São Paulo, Brasil. Boletim de Botânica 10, 65118.CrossRefGoogle Scholar
Paula, E.J. and Oliveira-Filho, E.C. (1980) Phenology of two populations of Sargassum cymosum (Phaeophyta–Fucales) of São Paulo State coast, Brazil. Boletim de Botânica 8, 2139.Google Scholar
Paula, E.J. and Oliveira-Filho, E.C. (1982) Wave exposure and ecotypical differentiation in Sargassum cymosum (Phaeophyta–Fucales). Phycologia 21, 145153.CrossRefGoogle Scholar
Reis, R.P., Leal, M.C.R., Yoneshigue-Valentin, Y. and Belluco, F. (2003) Effect of biotic factors on growth of Hypnea musciformis (Rhodophyta–Gigartinales). Acta Botanica Brasilica 17, 279286.CrossRefGoogle Scholar
Robledo, D. and Freile-Pelegrín, Y. (2005) Seasonal variation in photosynthesis and biochemical composition of Caulerpa spp. (Bryopsidales, Chlorophyta) from the Gulf of Mexico. Phycologia 44, 312319.CrossRefGoogle Scholar
Rossi, S., Gili, J.M. and Hughes, R.G. (2000) The effects of exposure to wave action on the distribution and morphology of the epiphytic hydrozoans Clava multicornis and Dynamena pumila. Scientia Marina 64, 135140.CrossRefGoogle Scholar
Schmidt, A.L. and Scheibling, R.E. (2006) A comparison of epifauna and epiphytes on native kelps (Laminaria spp.) and the invasive green alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada. Botanica Marina 49, 315330.CrossRefGoogle Scholar
Seed, R. and O'Connor, R.J. (1981) Community organization in marine algal epifaunas. Annual Review of Ecology and Systematics 12, 4974.CrossRefGoogle Scholar
Stachowicz, J.J. and Whitlatch, R.B. (2005) Multiple mutualists provide complementary benefits to their seaweed host. Ecology 86, 24182427.CrossRefGoogle Scholar
Steneck, R.S. and Dethier, M.N. (1994) A functional group approach to the structure of algal dominated communities. Oikos 69, 476498.CrossRefGoogle Scholar
Széchy, M.T.M. and Cordeiro-Marino, M. (1991) Feofíceas do litoral norte do Estado do Rio de Janeiro, Brasil. Hoehnea 18, 205241.Google Scholar
Széchy, M.T.M. and Paula, E.J. (1997) Macroalgas epífitas em Sargassum (Phaeophyta–Fucales) do litoral dos Estados do Rio de Janeiro e São Paulo, Brasil. Leandra 12, 110.Google Scholar
Széchy, M.T.M. and Paula, E.J. (2000) Padrões estruturais quantitativos em bancos de Sargassum (Phaeophyta, Fucales) do litoral dos Estados do Rio de Janeiro e São Paulo, Brasil. Revista Brasileira de Botânica 23, 121132.Google Scholar
Széchy, M.T.M., Galliez, M. and Marconi, M.I. (2006) Quantitative variables applied to phenological studies of Sargassum vulgare C. Agardh (Phaeophyceae–Fucales) from Ilha Grande Bay, State of Rio de Janeiro. Revista Brasileira de Botânica 29, 2737.Google Scholar
Széchy, M.T.M. and , A.D.F. (2008) Variação sazonal do epifitismo por macroalgas em uma população de Sargassum vulgare C. Agardh (Phaeophyceae, Fucales) da Baía da Ilha Grande, Rio de Janeiro. Oecologia Brasiliensis 12, 299314.Google Scholar
Umar, M.J., McCook, L.J. and Price, I.R. (1998) Effects of sediment deposition on the seaweed Sargassum on a fringing coral reef. Coral Reefs 17, 169177.CrossRefGoogle Scholar
Underwood, A.J. (1997) Experiments in ecology—their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.Google Scholar
Underwood, A.J. and Jernakoff, P. (1984) The effects of tidal height, wave-exposure, seasonality and rock-pools on grazing and the distribution of intertidal macroalgae in New South Wales. Journal of Experimental Marine Biology and Ecology 75, 7196.CrossRefGoogle Scholar
Veloso, A.P.A. and Széchy, M.T.M. (2008) Variações temporais no desenvolvimento vegetativo reprodutivo macroalga Sargassum C. Agardh (Fucales, Phaeophyceae)—síntese do conhecimento. Oecologia Brasiliensis 12, 275290.Google Scholar
Williams, G.A. (1996) Seasonal variation in a low shore Fucus serratus (Fucales, Phaeophyta) population and its epiphytic fauna. Hydrobiologia 326/327, 191197.CrossRefGoogle Scholar