Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T23:53:27.579Z Has data issue: false hasContentIssue false

Lactate Metabolism in Fish

Published online by Cambridge University Press:  11 May 2009

P. R. Dando
Affiliation:
The Plymouth Laboratory

Extract

The activity of lactate dehydrogenase was measured in the livers of 36 species of fish. These species could be divided into two groups, those with liver activities of more than 1000 mU/mg protein and those with activities of less than 100 mU/ mg protein. The lactate and pyruvate of samples of blood, muscle and liver from cod, plaice, bass and mackerel were determined. Samples were taken from ‘rested’ and trawled fish and from fish allowed to recover for 3 h after trawling. The rate of removal of lactate from the white muscle after capture in the trawl was not related to high blood and liver activities of lactate dehydrogenase. There was no relationship between the activities of nine of the glycolytic enzymes in the white muscle of cod and plaice and the liver lactate dehydrogenase activity. Little blood lactate appears to be taken up by the liver. It is concluded that the liver of cod, plaice and bass has a negligible role in metabolizing blood lactate.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, I. & Connor, A. R., 1962. Blood lactate in yellow fin tuna, Neothunnus macropterus, and skipjack, Katsuwonus pelamis, following capture and tagging. Bull. inter-Am, trop. Tuna Commn., Vol. 6, pp. 231–80.Google Scholar
Beamish, F. W. H., 1966. Muscular fatigue and mortality in haddock. J. Fish. Res. Bd Can., Vol. 23, pp. 1507–21.CrossRefGoogle Scholar
Beisenherz, C., 1955. In Methods in Enzymology, Vol. 1, pp. 387–8. Ed. Colo-Wick, S. P. and Kaplan, N. O.. London: Academic Press.CrossRefGoogle Scholar
Black, E. C., 1957a. Alterations in the blood level of lactic acid in certain salmonoid fishes following muscular activity. III. Sockeye salmon Oncorhynchus nerka.J. Fish. Res. Bd Can., Vol. 14, pp. 806–14.Google Scholar
Black, E. C., 1957b. Alterations in the blood level of lactic acid in certain salmonoid fishes following muscular activity. I. Kamloops trout Salmo gairdneri. J. Fish. Res. Bd Can., Vol. 14, pp. 117–34.CrossRefGoogle Scholar
Black, E. C., Connor, A. R., Lam, K. C. & Chiu, W. G., 1962. Changes in glycogen pyruvate and lactate in rainbow trout Salmo gairdneri during and following muscular activity. J. Fish. Res. Bd Can., Vol. 19, pp. 409–36.CrossRefGoogle Scholar
Black, E. C., Manning, G. T. & Hayashi, K., 1966. Changes in levels of hemoglobin, oxygen, carbon dioxide, pyruvate and lactate in venous blood of rainbow trout (Salmo gairdneri) during and following severe muscular activity. J. Fish. Res. Bd Can., Vol. 23, pp. 783–95.CrossRefGoogle Scholar
Black, E. C., Robertson, A. C. & Parker, R. R., 1961. Some aspects of carbohydrate metabolism in fish. In Comparative Physiology of Carbohydrate Metabolism pp. 89124. Ed. Martin, A. W., Seattle: University of Washington Press.Google Scholar
Bücher, T., 1955a. In Methods in Enzymology, Vol. 1., pp. 415–18. Ed. Colowick, S. P. and Kaplan, N. O.. London: Academic Press.CrossRefGoogle Scholar
Bücher, T., 1955b. In Methods in Enzymology, Vol. 1., pp. 427430. Ed. Colo-Wick, S. P. and Kaplan, N. O.. London: Academic Press.CrossRefGoogle Scholar
Bücher, T. & Pfleiderer, G., 1955. In Methods in Enzymology, Vol. 1, pp. 435–6. Ed. Colowick, S. P. and Kaplan, N. O.. London: Academic Press.CrossRefGoogle Scholar
Buddenbrock, W. Von., 1938. Beobachtugen über das Sterben gefangener Seefische und über den Milchsauregehalt des Fischblutes. Rapp. P-v. Reun. Cons. perm, int. Explor. Mer, Vol. 101 (iv, 2), pp. 17.Google Scholar
Collins, G. B., Elling, C. H., Black, E. C. & Robinson, A. C. 1961. The effects of muscular activity exerted in ascending experimental ‘endless’ fishways on glycogen and lactate levels in mature migrating sockeye salmon, Oncorhynchus nerka. In Comparative Physiology of Carbohydrate Metabolism, p. 97. Ed. Martin, A. W.. Seattle: University of Washington Press.Google Scholar
Collins, G. B., Gauley, J. R. & Elling, C. H., 1962. Ability of salmonids to ascend high fishways. Trans. Am. Fish. Soc, Vol. 91, pp. 17.CrossRefGoogle Scholar
Cori, G. T., Slein, M. W. & Cori, C. F., 1948. Crystalline D-Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle. J. biol. Chem., Vol. 173, pp. 605–18.CrossRefGoogle ScholarPubMed
Drummond, G. I. & Black, E. C., 1960. Comparative physiology: fuel of muscle metabolism. A. Rev. Physiol., Vol. 22, pp. 169–90.CrossRefGoogle ScholarPubMed
Drury, D. R. & Wick, A. N., 1956. Metabolism of lactic acid in the intact rabbit. Am. J. Physiol., Vol. 184, pp. 304–8.CrossRefGoogle ScholarPubMed
Fraser, D. I., Dyer, W. J., Weinstein, H. M., Dingle, J. R. & Hines, J. A., 1966. Glycolytic metabolites and their distribution at death in the white and red muscle of cod following various degrees of antemortem muscular activity. Can. J. Biochem., Vol. 44, pp. 1015–33.CrossRefGoogle ScholarPubMed
Hers, H. G., Beaufays, H. & De Duve, C., 1953. L'analyse simultanée des hexoses des trioses et de leurs esters phosphóres. Biochim. biophys. Ada, Vol. 11, pp. 416–26.CrossRefGoogle Scholar
Hohorst, H. J., Kreutz, F. H. & Bucher, T., 1959. Üiber Metabolitgehalte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem Z., Bd. 332, pp. 1846.Google Scholar
Johnson, R. E., Edwards, H. T., Dill, D. B. & Wilson, J. W., 1945. Blood as a physiochemical system. XIII. The distribution of lactate. J. biol. Chem., Vol. 157, pp. 461–73.CrossRefGoogle Scholar
Krogh, A. & Leitch, I., 1918. The respiratory function of the blood in fishes, J. Physiol., Vol. 52, pp. 288300.CrossRefGoogle Scholar
Leivestad, H., Andersen, H. & Scholander, P. F., 1957. Physiological response to air exposure in cod fish. Science, N. Y., Vol. 126, p. 505.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J., 1951. Protein measurement with the Folin phenol reagent. J. biol. Chem., Vol. 193, pp. 265–75,CrossRefGoogle ScholarPubMed
Marine Biological Association, 1957. Plymouth Marine Fauna, 3rd. ed.Google Scholar
Racker, E., 1947. Spectrophotometric measurement of hexokinase and phosphohexokinase activity. J. biol. Chem., Vol. 167, pp. 843–54.CrossRefGoogle ScholarPubMed
Redfield, A. C. & Medearis, D. N., 1926. The content of lactic acid and the development of tension in cardiac muscle. Am. J. Physiol., Vol. 77, pp. 662–8.CrossRefGoogle Scholar
Rodwell, V. W., Towne, J. C. & Grisolia, S., 1957. The kinetic properties of yeast and muscle phosphoglyceric acid mutase. J. biol. Chem., Vol. 228, pp. 875–90.CrossRefGoogle ScholarPubMed
Roe, J. H., Epstein, J. H. & Goldstein, N. P., 1949. A photometric method for the determination of inulin in plasma and urine. J. biol. Chem., Vol. 178, pp. 839–45.CrossRefGoogle Scholar
Scholander, P. F., 1957. Oxygen dissociation curves in fish blood. Acta physiol. scand., Vol. 41, pp. 340–44.CrossRefGoogle ScholarPubMed
Sharp, J. G., 1935. Glycogenolysis in fish liver at low temperatures. Biochem. J., Vol. 29, pp. 854–9.CrossRefGoogle ScholarPubMed
Wittenberg, C. & Diaciuc, I. V., 1965. Effort metabolism of lateral muscle in carp. J. Fish. Res. Bd Can., Vol. 22, pp. 1397–406.CrossRefGoogle Scholar
Wollenberger, A., Ristau, O. & Schoffa, G., 1960. Eine einfache Technik der extrem schnellen Abkühlung grösserer Gewebestücke. Pflügers Arch. ges. Physiol., Bd. 270, pp. 399412.CrossRefGoogle Scholar