Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T00:58:30.280Z Has data issue: false hasContentIssue false

Larval and Early Post-Larval Development of Arctica Islandica

Published online by Cambridge University Press:  11 May 2009

R. A. Lutz
Affiliation:
Department of Oyster Culture, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903
R. Mann
Affiliation:
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
J. G. Goodsell
Affiliation:
Department of Oyster Culture, New Jersey Agricultural Experiment Station, Cook College, Rutgers University, New Brunswick, New Jersey 08903
M. Castagna
Affiliation:
Virginia Institute of Marine Science, Wachapreague, Virginia 23480

Extract

Mature eggs were stripped from ripe adult specimens of Arctica islandica and exposed to a dilute solution of ammonium hydroxide for various lengths of time before addition of stripped sperm. Larval and early post-larval stages were cultured under experimental laboratory conditions using standard bivalve rearing techniques. Larval cultures were maintained at various controlled temperatures ranging from 8·5 to 14·5 °C. Minimum time to settlement was 32 days at a temperature of approximately 13 °C; at temperatures between 8·5 and 10·0 °C, settlement was not observed until approximately 55 days after fertilization. Larval growth rates were significantly faster at temperatures between 11·0 and 145 °C than at temperatures between 8°C. Morphometry of the larval shell and morphology of the larval hinge apparatus were independent of larval growth rates and experimental culture conditions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, R. T. 1974. American Seashelh. 663 pp. New York: Van Nostrand Reinhold Co.Google Scholar
Ansell, A. D. 1962. The functional morphology of the larva, and the post-larval development of Venus striatula (da Costa). Journal of the Marine Biological Association of the United Kingdom, 42, 419443.CrossRefGoogle Scholar
Bayne, B. L. 1965. Growth and the delay of metamorphosis of the larvae of Mytilus edulis (L.). ophelia, 2, 147.Google Scholar
Bayne, B. L. 1971. Some morphological changes that occur at the metamorphosis of the larvae of Mytilus edulis. In Proceedings of the Fourth European Marine Biology Symposium, Bangor, 1969 (ed. Crisp, D. J.), pp.259280. Cambridge University Press.Google Scholar
Bayne, B. L. 1976. The biology of mussel larvae. In Marine Mussels: Their Ecology and Physiology (ed. Bayne, B. L.), pp.81120. Cambridge University Press.Google Scholar
Bernard, F. 1895. Premiére note sur la developpement et la morphologie de la coquille chez les lamellibranches. Bulletin de la SociÈté géologique de France, 23 (3).Google Scholar
Bernard, F. 1896a. Deuxiéme note sur le developpement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société géologique de France, 24 (3)Google Scholar
Bernard, F. 1896b. Troisiéme note sur le développement et la morphologie de la coquille chez les lamellibranches (anisomyaires). Bulletin de la Société géologique de France, 24 (3)Google Scholar
Bernard, F. 1897. Quatriéme et derniere note sur le developpement et la morphologie de la coquille chez les lamellibranches. Bulletin de la Société géologique de France, 25 (3)Google Scholar
Bernard, F. 1898. Recherches ontogeniques et morphologiques sur la coquille des lamellibranches. I. Taxodontes et anisomyaires. Annales des sciences naturelles (Zoologie), 8, 1208.Google Scholar
Bush, K. J. 1885. List of deep-water Mollusca dredged by the United States Fish Commission steamer Fish Hawk in 1880, 1881 and 1882, with their range in depth. U.S. Commission of Fish and Fisheries, part 11, Rep. Comm. 1883, Appendix C, Article 17, pp.701727.Google Scholar
Calloway, C. B. & Turner, R. D. 1978. New techniques for preparing shells of bivalve larvae for examination with the scanning electron microscope. Bulletin. American Malacological Union, 1978, 1724.Google Scholar
Carriker, M. R. & Palmer, R. E. 1979. Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the oyster Crassostrea virginica. Proceedings. National Shellfisheries Association, 69, 103128.Google Scholar
Castagna, M. 1975. Culture of the bay scallop, Argopecten irradians, in Virginia. Marine Fisheries Review, 37 (1)Google Scholar
Castagna, M.Goodsell, J.Lutz, R. & Mann, R. 1982. The egg capsule of Arctica islandica. Journal of Shellfish Research, 2. (In the Press.)Google Scholar
Castagna, M. & Kraeuter, J. N. 1977. Mercenaria culture using stone aggregate for predator protection. Proceedings. National Shellfisheries Association, 67, 16.Google Scholar
Chanley, P. & Andrews, J. D. 1971 Aids for identification of bivalve larvae of Virginia. Malacologia, a, 45119.Google Scholar
Culliney, J. L.Turner, R. D. & Boyle, P. J. 1975. New approaches and techniques for studying bivalve larvae. In Culture of Marine Invertebrate Animals (ed. Smith, W. C. and Chanley, M. H.), pp. 257271. New York: Plenum Press.CrossRefGoogle Scholar
Dinamani, P. 1976. The morphology of the larval shell in the genus Crassostrea Sacco, 1897 (Ostreidae). Journal of Molluscan Studies, 42, 95107.Google Scholar
Elston, R.J 1980. Ultrastructural aspects of a serious disease of hatchery reared larval oysters, Crassostrea gigas Thunberg. Journal of Fish Diseases, 3, 110.CrossRefGoogle Scholar
Field, I. A. 1922. Biology and economic value of the sea mussel, Mytilus edulis (L.). Bulletin the Bureau of Fisheries, Washington, 38, 127259.Google Scholar
Forbes, E. & Hanley, S. 1853. A History of British Mollusca and Their Shells. 486 pp. London.Google Scholar
Forster, G. R. 1981. A note on the growth of Arctica islandica. Journal of the Marine Biological Association of the United Kingdom, 61, 817.CrossRefGoogle Scholar
Franz, D. R. & Merrill, A. S. 1980. Molluscan distribution patterns on the continental shelf of the Middle Atlantic Bight (northwest Atlantic). Malacologia, 19, 209225.Google Scholar
Galtsoff, P. S. 1964. The American oyster Crassostrea virginica Gmelin. Fishery Bulletin. Fish and Wildlife Service. United States Department of the Interior, 64, 480 pp.Google Scholar
Jablonsk, D. & Lutz, R. A. 1980. Molluscan larval shell morphology: ecological and paleontological applications. In Skeletal Growth of Aquatic Organisms (ed. Rhoads, D. C. and Lutz, R. A.), pp. 323377. New York: Plenum Press.CrossRefGoogle Scholar
Jensen, A. S. 1912. Lamellibranchiata (Part I). Danish Ingolf-Expedition, 2 (5)Google Scholar
Jones, D. S. 1980. Annual Cycle of Shell Growth and Reproduction in the Bivalves Spisula solidissima and Arctica islandica. Ph.D. Thesis, Princeton University, Princeton, New Jersey.Google Scholar
Jorgensen, C. B. 1946. Lamellibranchia. Meddelelser fra Kommissionen for Danmarks Fiskeri-Havundersegelser (ser. Plankton), 4, 277311.Google Scholar
Kauffman, E. G. 1975. Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. Special Papers. Geological Association of Canada, no. 13, 163194.Google Scholar
Labarbera, M. 1975. Larval and post-larval development of the giant clams Tridacna maxima and Tridacna squamosa (Bivalvia, Tridacnidae). Malacologia, 15, 6979.Google Scholar
Landers, W. S. 1976. Reproductfon and early development of the ocean quahog, Arctica islandica, in the laboratory. Nautilus, 90, 8892.Google Scholar
Le Pennec, M. 1978. Génése de la coquille larvaire et postlarvaire chez divers bivalves marins. Thése d'Etat, Brest.Google Scholar
Le Pennec, M. 1980. The larval and post-larval hinge of some families of bivalve molluscs. Journal of the Marine Biological Association of the United Kingdom, 60, 601617.CrossRefGoogle Scholar
Loosanoff, V. L. 1953. Reproductive cycle in Cyprina islandica. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 104, 146155.CrossRefGoogle Scholar
Loosanoff, V. L. & Davis, H. C 1963. Rearing of bivalve mollusks. Advances in Marine Biology, 1, 1136.CrossRefGoogle Scholar
Loosanoff, V. L.Davis, H. C. & Chanley, P. E. 1966. Dimensions and shapes of larvae of some marine bivalve mollusks. Malacologia, 4, 351435.Google Scholar
Lutz, R. A. 1979. The bivalve “ larval ligament pit ”as an exclusively post-larval feature. Proceedings. National Shellfisheries Association, 69, 197.Google Scholar
Lutz, R. A. & Hidu, H. 1979. Hinge morphogenesis in the shells of larval and early post-larval mussels (Mytilus edulis L. and Modiolus modiolus (L.)). Journal of the Marine Biological Association of the United Kingdom, 59, 111121.CrossRefGoogle Scholar
Lutz, R. A. & Jablonski, D. 1978a. Cretaceous bivalve larvae. Science, NewYork, 199, 439440.CrossRefGoogle ScholarPubMed
Lutz, R. A. & Jablonski, D. 1978b. Classification of bivalve larvae and early post-larvae using scanning electron microscopy. American Zoologist, 18, 647.Google Scholar
Lutz, R. A. & Jablonski, D. 1978c. Larval bivalve shell morphometry a new paleoclimatic tools Science, NewYork, 202, 5153.Google Scholar
Lutz, R. A. & Jablonski, D. 1979. Micro- and ultramorphology of larval bivalve shells: ecological paleoecological, and paleoclimatic applications. Proceedings. National Shellfisheries Association, 69, 197198.Google Scholar
Lutz, R. A. & Jablonski, D. 1981. Identification of living and fossil bivalve larvae. Science, New York, 212, 1419.CrossRefGoogle ScholarPubMed
Madsen, F. J. 1949. Marine Bivalvia. Zoology of Iceland, 4 (63)Google Scholar
Merrill, A. S. & Ropes, J. W. 1969. The general distribution of the surf clam and ocean quahog. Proceedings. National Shellfisheries Association, 59, 4045.Google Scholar
Morse, D. E.Duncan, H.Hooker, N. & Morse, A. 1977. Hydrogen peroxide induces spawning in mollusks, with activation of prostaglandin endoperoxide synthetase. Science, New York, 196, 298300.CrossRefGoogle ScholarPubMed
Murawski, S. A.Ropes, J. W. & Serchuk, F. M. 1981. Growth of the ocean quahog, Arctica islandica, in the Middle Atlantic Bight. Fishery Bulletin. National Oceanic and Atmospheric Administration of the United States. (In the Press.)Google Scholar
Murawski, S. A. & Serchuk, F. M. 1979. Shell length-meat weight relationships of ocean quahogs, Arctica islandica, from the Middle Atlantic Shelf. Proceedings. National Shellfisheries Association, 69, 4046.Google Scholar
Muus, K. 1973. Settling, growth and mortality of young bivalves in the 0resund. Ophelia, 12, 79116.CrossRefGoogle Scholar
Nicol, D. 1951. Recent species of the veneroid pelecypod Arctica. Journal of the Washington Academy of Sciences, 41 (3)Google Scholar
Ockelmann, K. W. 1965. Developmental types in marine bivalves and their distribution along the Atlantic coast of Europe. In Proceedings of the First European Malacological Congress, London, 1962 (ed. Cox, L. R. and Peake, J. F.), pp. 2535. London: Conchological Society of Great Britain and Ireland and the Malacological Society of London.Google Scholar
Posgay, J. A. 1953. Sea scallop investigations. In Sixth Report on Investigations of the Shellfisheries of Massachusetts, pp. 924. Massachusetts Department of Conservation, Division of Marine Fisheries.Google Scholar
Rees, C. B. 1950. The identification and classification of lamellibranch larvae. Hull Bulletins of Marine Ecology, 3, 73104.Google Scholar
Scheltema, R. S. 1977 Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In Concepts and Methods of Biostratigraphy (ed. Kaurfman, E. G. and Hazel, J. E.), pp. 73108. Stroudsburg: Dowden, Hutchinson and Ross.Google Scholar
Schweinitz, E. H. DE & Lutz, R. A. 1976. Larval development of the northern horse mussel Modiolus modiolus (L.), including a comparison with the larvae of Mytilus edulis L. as an aid in planktonic identification. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 150, 348360.CrossRefGoogle Scholar
Sokal, R. R. & Rohlf, F. J. 1969. Biometry. 776 pp. San Francisco: W. H. Freeman.Google Scholar
Sullivan, C. M. 1948. Bivalve larvae of Malpeque Bay, P.E.I. Bulletin. Fisheries Research Board of Canada, no. 77, 36 pp.Google Scholar
Thiede, J. 1974. Marine bivalves: distribution of mero-planktonic shell-bearing larvae in eastern North Atlantic surface waters. Paleogeography, Palaeoclimatology, Palaeoecology, 15, 267290CrossRefGoogle Scholar
Thompson, I.Jones, D. S. & Dreibelbis, D. 1980a. Annual internal growth banding and life history of the ocean quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology, 57, 2534.CrossRefGoogle Scholar
Thompson, I.Jones, D. S. & Ropes, J. W. 19806. Advanced age for sexual maturity in the ocean quahog Arctica islandica (Mollusca: Bivalvia). Marine Biology, 57, 3539.CrossRefGoogle Scholar
Thorson, G. 1946. Reproduction and larval development of Danish marine bottom invertebrates. Meddelelser fra Kommissionen for Danmarks Fiskeri-og Havundersegelser (ser. Plankton), 4 523 PP.Google Scholar
Trueman, E. R. 1950. Observations on the ligament of Mytilus edulis. Quarterly Journal of Microscopical Science, 91, 225–236.Google ScholarPubMed
Turner, R. D. 1976. Some factors involved in the settlement and metamorphosis of marine bivalve larvae. In Proceedings of the Third International Biodegradation Symposium, Kingston, Rhode Island (ed. Sharpley, J. M. and Kaplan, A. M.), pp. 409416. London: Applied Science Publishers.Google Scholar
Turner, R. D. 1977. Search for a 'weak link'. In Proceedings of a Workshop on the Biodeterioration of Tropical Woods: Chemical Basis for Natural Resistance, pp. 3140. Washington, D.C.: Naval Research Laboratory.Google Scholar
Turner, R. D. & Boyle, P. J. 1975. Studies of bivalve larvae using the scanning electron microscope and critical point drying. Bulletin. American Malacological Union, 40, 5965.Google Scholar
Waller, T. R. 1981. Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linne. Smithsonian Contributions to Zoology, no. 328, 70 pp.Google Scholar