Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T11:42:36.777Z Has data issue: false hasContentIssue false

Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores

Published online by Cambridge University Press:  25 October 2016

Emilio Lanna
Affiliation:
Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Av. Carlos Chagas Filho 373, CCS, sala A0-100, Ilha do Fundão, 21941590, Rio de Janeiro, Brazil
Michelle Klautau*
Affiliation:
Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Av. Carlos Chagas Filho 373, CCS, sala A0-100, Ilha do Fundão, 21941590, Rio de Janeiro, Brazil
*
Correspondence should be addressed to: M. Klautau Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Av. Carlos Chagas Filho 373, CCS, sala A0-100, Ilha do Fundão, 21941590, Rio de Janeiro, Brazil email: mklautau@biologia.ufrj.br

Abstract

Life history accounts for the chance of survival and reproductive success of a species, considering, for example, when, how often and how much a species reproduces. Consequently, it is directly related to the success or failure of bioinvasions. Here, we investigated some aspects of the life history of the cryptogenic calcareous sponge Sycettusa hastifera. A population from Arraial do Cabo, Brazil (south-western Atlantic) was investigated from September 2008 to December 2009 by monthly collections and histological analyses. We observed that S. hastifera reproduced continuously throughout the year without seasonality and presented high fecundity. The fecundity was not different depending on the sponge body part (top or base), but it was related to the wet weight of the sponge (although a minimum size was not required for reproduction). Reproduction could not be predicted by the seawater temperature. The reproductive characteristics of S. hastifera were similar to those of other previously studied calcareous sponges. Sycettusa hastifera shows traits of an invasive species, such as high fecundity, short life cycle, early sexual maturity and the ability to use pioneer habitats. Consequently, it possesses several characteristics that would allow it to invade new areas.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Universidade Federal da Bahia, Instituto de Biologia, Departamento de Biologia Geral, Rua Barão de Jeremoabo s/n, 40170-115, Campus de Ondina, Salvador, BA, Brazil

References

REFERENCES

Abdo, D.A., Fromont, J. and McDonald, J.I. (2008) Strategies, patterns and environmental cues for reproduction in two temperate haliclonid sponges. Aquatic Biology 1, 291302.CrossRefGoogle Scholar
Azevedo, F. and Klautau, M. (2007) Calcareous sponges (Porifera, Calcarea) from Ilha Grande Bay, Brazil, with description of three new species. Zootaxa 1402, 122.CrossRefGoogle Scholar
Bancroft, J.D. and Stevens, A. (1996) Theory and practice of histological techniques. New York, NY: Churchill Livingstone.Google Scholar
Bauer, R.T. (1989) Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. Journal of Experimental Marine Biology and Ecology 127, 175187.CrossRefGoogle Scholar
Bell, J.J. (2008) Sponges as agents of biological disturbance. Marine Ecology Progress Series 368, 127135.CrossRefGoogle Scholar
Berasategui, A.A., Hoffmeyer, M.S., Biancalana, F., Fernandez Severini, M. and Menendez, M.C. (2009) Temporal variation in abundance and fecundity of the invading copepod Eurytemora americana in Bahía Blanca Estuary during an unusual year. Estuarine, Coastal and Shelf Science 85, 8288.CrossRefGoogle Scholar
Castro, B.T. and Pires, D.O. (2006) Reproductive biology of Madracis decactis (Lyman, 1859) (Cnidaria, Scleractinia) from southern Bahia reefs, Brazil. Arquivos do Museu Nacional 64, 1927.Google Scholar
Cavalcanti, F.F., Skinner, L.F. and Klautau, M. (2013) Population dynamics of cryptogenic calcarean sponges (Porifera, Calcarea) in southeastern Brazil. Marine Ecology 34, 280288.CrossRefGoogle Scholar
de Paula, A.F., Pires, D. and Creed, J.C. (2014) Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. Journal of the Marine Biological Association of the United Kingdom 94, 481492.CrossRefGoogle Scholar
Dendy, A. (1913) Report on the calcareous sponges collected by H.M.S. Sealark in the Indian Ocean. Transactions of the Linnean Society of London, Zoology 16, 129.CrossRefGoogle Scholar
Dendy, A. (1914) Observations on the gametogenesis of Grantia compressa. Quarterly Journal of Microscopic Science 60, 313370.Google Scholar
Eerkes-Medrano, D.I. and Leys, S.P. (2006) Ultrastructure and embryonic development of a syconoid calcareous sponge. Invertebrate Biology 125, 177194.CrossRefGoogle Scholar
Ettinger-Epstein, P., Whalan, S.W., Battershill, C.N. and de Nys, R. (2007) Temperature cues gametogenesis and larval release in a tropical sponge. Marine Biology 153, 171178.CrossRefGoogle Scholar
Fell, P.E. (1976) The reproduction of Haliclona loosanoffi and its apparent relationship to water temperature. Biological Bulletin 150, 200210.CrossRefGoogle Scholar
Fernandes, L.D., Quintanilha, J., Monteiro-Ribas, W., Gonzalez-Rodriguez, E. and Coutinho, R. (2012) Seasonal and interannual coupling between sea surface temperature, phytoplankton and meroplankton in the subtropical south-western Atlantic Ocean. Journal of Plankton Research 34, 236244.CrossRefGoogle Scholar
Flatt, T. and Heyland, A. (2011) Mechanisms of life history evolution: the genetics and physiology of life history traits and trade-offs. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Franzen, W. (1988) Oogenesis and larval development of Scypha ciliata (Porifera, Calcarea). Zoomorphology 107, 349357.CrossRefGoogle Scholar
Fromont, J. (1994) Reproductive development and timing of tropical sponges (Order Haplosclerida) from the Great Barrier Reef, Australia. Coral Reefs 13, 127133.CrossRefGoogle Scholar
Futuyma, D.J. (2009) Evolution, 2nd edition. Sunderland, MA: Sinauer Associates.Google Scholar
Gallissian, M.-F. (1981) Etude ultrastructurale de l'ovogenèse chez quelques éponges calcaires (Porifera, Calcarea). Archives de Zoologie Expérimentale et Générale 122, 329340.Google Scholar
Giese, A.C. and Pearse, J.S. (1974) Introduction: general principles. In Giese, A.C. and Pearse, J.S. (eds) Reproduction of marine invertebrates. volume I: acoelomate and pseudocoelomate metazoans. New York, NY: Academic Press, pp. 149.Google Scholar
Hails, A.J. and Yaziz, S. (1982) Abundance, breeding and growth of the ocypodid crab Dotilla myctiroides (Milne-Edwards) on a West Malaysian Beach. Estuarine, Coastal and Shelf Science 15, 229239.CrossRefGoogle Scholar
Hellström, M., Kavanagh, K.D. and Benzie, J.A.H. (2010) Multiple spawning events and sexual reproduction in the octocoral Sarcophyton elegans (Cnidaria: Alcyonacea) on Lizard Island, Great Barrier Reef. Marine Biology 157, 383392.CrossRefGoogle Scholar
Jänes, H., Kotta, J. and Herkül, K. (2015) High fecundity and predation pressure of the invasive Gammarus tigrinus cause decline of indigenous gammarids. Estuarine, Coastal and Shelf Science 165, 185189.CrossRefGoogle Scholar
Johnston, E.L., Piola, R.F. and Clark, G.F. (2009) The role of propagule pressure in invasion success. In Rilov, G. and Crooks, J.A. (eds) Biological invasions in marine ecosystems. Berlin: Springer, pp. 133152.CrossRefGoogle Scholar
Lanna, E. and Klautau, M. (2010) Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249261.CrossRefGoogle Scholar
Lanna, E. and Klautau, M. (2012) Embryogenesis and larval ultrastructure in Paraleucilla magna (Calcarea, Calcaronea), with remarks on the epilarval trophocyte epithelium (“placental membrane”). Zoomorphology 131, 277292.CrossRefGoogle Scholar
Lanna, E., Monteiro, L.C. and Klautau, M. (2007) Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In Custódio, M.R., Lôbo-Hajdu, G.E., Hajdu, E. and Muricy, G. (eds) Porifera research – biodiversity, innovation and sustainability. Volume 28. Rio de Janeiro: Museu Nacional – Série Livros, pp. 413418.Google Scholar
Lanna, E., Paranhos, R., Paiva, P.C., and Klautau, M. (2015) Environmental effects on the reproduction and fecundity of the introduced calcareous sponge Paraleucilla magna in Rio de Janeiro, Brazil. Marine Ecology 36, 10751087.CrossRefGoogle Scholar
Longo, C., Pontassuglia, C., Corriero, G. and Gaino, E. (2012) Life-cycle traits of Paraleucilla magna, a calcareous sponge invasive in a coastal Mediterranean Basin. PLoS ONE 7, e42392.CrossRefGoogle Scholar
Manuel, M., Borchiellini, C., Alivon, E., Parco, Y.L., Vacelet, J. and Boury-Esnault, N. (2003) Phylogeny and evolution of calcareous sponges: monophyly of Calcinea and Calcaronea, high level of morphological homoplasy, and the primitive nature of axial symmetry. Systematic Biology 52, 311333.CrossRefGoogle ScholarPubMed
McMurray, S., Blum, J. and Pawlik, J. (2008) Redwood of the reef: growth and age of the giant barrel sponge Xestospongia muta in the Florida Keys. Marine Biology 155, 159171.CrossRefGoogle Scholar
Meroz, E. and Ilan, M. (1995) Life history characteristics of a coral reef sponge. Marine Biology 124, 443451.CrossRefGoogle Scholar
Meroz-Fine, E., Shefer, S. and Ilan, M. (2005) Changes in morphology and physiology of an East Mediterranean sponge in different habitats. Marine Biology 147, 243250.CrossRefGoogle Scholar
Muramatsu, D. and Silveira, F. L. (2008) Gametogenesis in Madracis decactis Lyman, 1859 (Cnidaria, Scleractinia) from Ilha Grande Bay (Rio de Janeiro), southeastern Brazil. Brazilian Journal of Oceanography 56, 297305.CrossRefGoogle Scholar
Muricy, G., Hajdu, E., Custodio, M., Klautau, M., Russo, C.A.M. and Peixinho, S. (1991) Sponge distribution at Arraial do Cabo, SE Brazil. In Magoon, O.T. (eds), Proceedings of the VII symposium on coastal and ocean management. Long Beach: ASCE Publications, pp. 11831196.Google Scholar
Muthiga, N.A., Kawaka, J. A. and Ndirangu, S. (2009) The timing and reproductive output of the commercial sea cucumber Holothuria scabra on the Kenyan coast. Estuarine, Coastal and Shelf Science 84, 353360.CrossRefGoogle Scholar
Orton, J.H. (1914) Preliminary account of a contribution to an evaluation of the Sea. Journal of the Marine Biological Association of the United Kingdom (New Series) 10, 312326.CrossRefGoogle Scholar
Orton, J.H. (1920) Sea temperature, breeding and distribution in marine animals. Journal of the Marine Biological Association of the United Kingdom 12, 339–336.CrossRefGoogle Scholar
R Development Core Team (2015) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Available at http://www.R-project.org/.Google Scholar
Ramirez-Llodra, E. (2002) Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43, 87170.CrossRefGoogle ScholarPubMed
Reiswig, H.M. (1973) Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23, 191226.Google Scholar
Riesgo, A. and Maldonado, M. (2008) Differences in reproductive timing among sponges sharing habitat and thermal regime. Invertebrate Biology 127, 357367.CrossRefGoogle Scholar
Riesgo, A., Maldonado, M. and Durfort, M. (2007) Dynamics of gametogenesis, embryogenesis, and larval release in a Mediterranean homosclerophorid demosponge. Marine and Freshwater Research 58, 398417.CrossRefGoogle Scholar
Rilov, G. and Crooks, J.A. (2009) Biological invasions in marine ecosystems. Berlin: Springer.CrossRefGoogle Scholar
Sakai, A.K., Allendorf, F.W., Holt, J.S., Lodge, D.M., Molofsky, J., With, K.A., Baughman, S., Cabin, R.J., Cohen, J.E., Ellstrand, N.C., McCauley, D.E., O'Neil, P., Parker, I.M., Thompson, J.N. and Weller, S.G. (2001) The population biology of invasive species. Annual Review of Ecology and Systematics 32, 305332.CrossRefGoogle Scholar
Sarà, M. and Orsi, L.R. (1975) Sex differentiation in Sycon (Porifera Calcispongiae). Pubblicazioni della Stazione Zoologica di Napoli 39, 618634.Google Scholar
Sokal, R.R. and Rohlf, S.R. (1995) Biometry: the principles and practice of statistics in biological research. New York, NY: WH Freeman.Google Scholar
Stearns, S.C. (1989) Trade-offs in life-history evolution. Functional Ecology 3, 259268.CrossRefGoogle Scholar
Vacelet, J. (1964) Etude monographique de l’éponge calcaire pharétronide de Méditerranée, Petrobiona massiliana Vacelet et Lévi. Les pharétronides actuelles et fossiles. Recueil des Travaux de la Station Marine d'Endoume 34, 1125.Google Scholar
Ventura, R.C.C. and Pires, D.O. (2009) Ciclo de vida de invertebrados marinhos. In Soares-Gomes, A. and Pereira, R.C. (eds) Biologia Marinha, 2nd edition, Rio de Janeiro: Interciência, pp. 7194.Google Scholar
Voigt, O., Wülfing, E. and Wörheide, G. (2012) Molecular phylogenetic evaluation of classification and scenarios of character evolution in calcareous sponges (Porifera, Class Calcarea). PLoS ONE 7, e33417.CrossRefGoogle ScholarPubMed
Whalan, S., Battershill, C. and de Nys, R. (2007) Sexual reproduction of the brooding sponge Rhopaloeides odorabile. Coral Reefs 26, 655663.CrossRefGoogle Scholar