Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T05:36:00.240Z Has data issue: false hasContentIssue false

Luminescence in Polynoids IV. Measurements of Light Intensity

Published online by Cambridge University Press:  11 May 2009

J. A. C. Nicol
Affiliation:
The Plymouth Laboratory

Extract

The light energy emitted in a flash by single elytra of two polynoid worms has been measured, viz. Acholoë astericola and Lagisca extenuata. Maximal emission occurs at 515 mμ. Mean values for light intensity per flash from 1 elytrum are: Lagisca, 1·8 × 10−10 μJ/cm2 receptor surface at I m ; Acholoë, I·II × 10−8 μJ/cm2 receptor surface at I m. The light emitted in I flash by a single photocyte of Lagisca is 0·12 × 10−12 μJ/cm2 receptor surface at I m. It is estimated that the light from I elytrum of Lagisca could be seen by the dark-adapted human eye at 1·2 m in air.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonhomme, C., 1942. Recherches sur l'histologie de l'appareil lumineux des Polynoïnés. Bull. Inst. oceanogr. Monaco, Vol. 39, No. 823, 8 pp.Google Scholar
Clarke, G. L. & Backus, R. H., 1956. Measurements of light penetration in relation to vertical migration and records of luminescence of deep-sea animals. Deep-Sea Res., Vol. 4, pp. 114.Google Scholar
Graham, C. H. & Margaria, R., 1935. Area and the intensity-time relation in the peripheral retina. Amer. J. Physiol., Vol. 113, pp. 299305.CrossRefGoogle Scholar
Harvey, E. N., 1925. The total luminous efficiency of luminous bacteria. J.gen. Physiol., Vol. 8, pp. 89108.CrossRefGoogle ScholarPubMed
Hecht, S.Shlaer, S. & Pirenne, M. H., 1942. Energy, quanta and vision. J. gen. Physiol., Vol. 25, pp. 819–40.CrossRefGoogle ScholarPubMed
Kampa, E. M. & Boden, B. P., 1957. Light generation in a sonic-scattering layer. Deep-Sea Res., Vol. 4, pp. 7392.Google Scholar
Keitz, H. A. E., 1955. Light Calculations and Measurements. Eindhoven: Philips– Technical Library.,Google Scholar
Nicol, J. A. C., 1953. Luminescence in polynoid worms. J. mar. biol. Ass. U.K., Vol. 32, pp. 6584.CrossRefGoogle Scholar
Nicol, J. A. C., 1954. The nervous control of luminescent responses in polynoid worms. J. mar. biol. Ass. U.K., Vol. 33, pp. 225–55.CrossRefGoogle Scholar
Nicol, J. A. C., 1957a. Luminescence in polynoids. II. Different modes of response in the elytra. J. mar. biol. Ass. U.K., Vol. 36, pp. 261–9.CrossRefGoogle Scholar
Nicol, J. A. C., 1957b. Luminescence in polynoids. III. Propagation of excitation through the nerve cord. J. mar. biol. Ass. U.K., Vol. 36, pp. 271–3.CrossRefGoogle Scholar
Nicol, J. A. C., 1957c. Spectral composition of the light of polynoid worms. J. mar. biol. Ass. U.K., Vol. 36, pp. 529–38.CrossRefGoogle Scholar
Pirenne, M. H. & Denton, E. J., 1952. Accuracy and sensitivity of the human eye. Nature, Lond., Vol. 170, pp. 1039–42.CrossRefGoogle ScholarPubMed
Skogland, J. F., 1929. Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophoto-metric data. Misc. Publ. U.S. Dept. Commerce, No. 86, 23 pp.Google Scholar
Walsh, J. W. T., 1953. Photometry. London: Constable.Google Scholar