Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T07:51:36.809Z Has data issue: false hasContentIssue false

Meiofauna and free-living nematodes in volcanic sands of a remote South Atlantic, oceanic island (Trindade, Brazil)

Published online by Cambridge University Press:  11 October 2017

T.M.T. Santos*
Affiliation:
Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará (UFPA), Av. Augusto Corrêa, 01, 66075-110 Guamá–Belém–PA, Brazil
V. Venekey
Affiliation:
Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará (UFPA), Av. Augusto Corrêa, 01, 66075-110 Guamá–Belém–PA, Brazil
*
Correspondence should be addressed to: T.M.T. Santos, Grupo de Estudos de Nematoda Aquáticos (GENAQ), Laboratório de Pesquisa em Monitoramento Ambiental Marinho, Universidade Federal do Pará (UFPA), Av. Augusto Corrêa, 01, 66075-110 Guamá–Belém–PA, Brazil email: thuareag@gmail.com

Abstract

This study presents patterns of spatial and temporal variation in the meiofaunal community and nematode associations on the volcanic sandy beaches of Trindade Island, a remote oceanic island in the South-east Atlantic Ocean. Samples were collected in August (rainy season) and December 2014 (dry season) on four beaches (Tartarugas, Parcel, Cabritos and Portugueses) at three zones of the intertidal (high, mid and low). A total of 10 meiofaunal groups were found. Copepods (31%) and nematodes (27%) dominated the meiofauna in all beaches and zones, regardless of the season. Nematodes were comprised mainly of non-selective deposit feeders, with a total of 27 genera from 12 families, with Cyatholaimidae, Xyalidae and Oncholaimidae as the most diverse and abundant. Significant differences were found in the meiofaunal community, as well as in nematode associations, among seasons and intertidal zones but not among beaches. The sediment characteristics were the main drivers regulating the structure of meiobenthic fauna in Trindade Island. Our findings are also compared to other studies focusing on the meiofauna and nematodes of oceanic islands with carbonate and volcanic sediments; the major patterns are herein presented.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albuquerque, E.F., Pinto, A.P., Alcântara, A. and Gomes, V. (2007) Spatial and temporal changes in interstitial meiofauna on a sandy ocean beach of South America. Brazilian Journal of Oceanography 55, 121131.Google Scholar
Allen, G.R. (2008) Conservation hotspots of biodiversity and endemism for Indo-Pacific coral reef fishes. Aquatic Conservation: Marine and Freshwater Ecosystems 18, 541556.Google Scholar
Almeida, F.F.M. (2002) Ilha da trindade: Registro de vulcanismo cenozóico no Atlântico Sul. In Schobbenhaus, C. (ed.) Sítios geológicos e paleontológicos do Brasil. Brasilia: Dnpm, pp. 369377. [In Portuguese]Google Scholar
Alongi, D.M. (1990) Community dynamics of free-living nematodes in some tropical mangrove and sandflats. Bulletin of Marine Science 46, 358373.Google Scholar
Alves, R.J.V. (1998) Ilha Da trindade & Arquipélago Martin Vaz: Um Ensaio Geobotânico. Rio De Janeiro: Serviço de Documentação da Marinha, 144 pp. [In Portuguese]Google Scholar
Alves, R.J.V. and Castro, J.W.A. (2006) Ilhas oceânicas brasileiras: da pesquisa ao manejo. Brasília: IBAMA/Ministério do Meio Ambiente, 299 pp. [In Portuguese]Google Scholar
Bockheim, J.G. (2005) Soil of endemism and its relation to soil formation theory. Geoderma 129, 109124.Google Scholar
Boucher, G. (1997) Structure and biodiversity of nematode associations in the SW lagoon of New Caledonia. Coral Reefs 16, 177186.Google Scholar
Boucher, G. and Gourbault, N. (1990) Sublittoral meiofauna and diversity of nematode associations off Guadeloupe Islands (French West Indies). Bulletin of Marine Science 47, 448463.Google Scholar
Bouwman, L.A. (1983) Systematics, ecology and feeding biology of estuarine nematodes. Biologisch Onderzoek Eems-Dollard Estuarium 5, 1173.Google Scholar
Buchanan, J.B. (1984) Sediment analysis. In Holme, N.A. and McIntyre, A.D. (eds) Methods for the study of marine benthos. Oxford: Blackwell Scientific Publications, pp. 4165.Google Scholar
Clark, M.R., Rowden, A.A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K.I., Rogers, A.D., O'Hara, T.D., White, M., Shank, T.M. and Hall-Spencer, J.M. (2010) The ecology of seamounts: structure, function, and human impacts. Annual Review of Marine Science 2, 253278.Google Scholar
Cobb, N.A. (1917) Notes on Nemas. Contributions to Science of Nematology 5, 117128.Google Scholar
Coull, B.C. (1988) Ecology of the marine meiofauna. In Higgins, R.P. and Thiel, H. (eds) Introduction to the study of meiofauna. Washington, DC: Smithsonian Institution, pp. 1838.Google Scholar
de Forges, B.R., Koslow, J.A. and Poore, G.C.B. (2000) Diversity and endemism of the benthic seamount fauna in the Southwest Pacific. Nature 405, 944947.Google Scholar
de Grisse, A.T. (1969) Redescription ou modification de quelques techniques utilisés dans l’ étude des nématodes phytoparasitaires. Mededelingen Rijksfakulteit Landbouwwetenschappen Gent 34, 351369. [In French]Google Scholar
Delgado, J.D., Riera, R., Monterroso, Ó. and Núñez, J. (2009) Distribution and abundance of meiofauna in intertidal sand substrata around Iceland. Aquatic Ecology 43, 221233.Google Scholar
de Troch, M., Raes, M., Muthumbi, A., Gheerardyn, H. and Vanreusel, A. (2008) Spatial diversity of nematode and copepod genera of the coral degradation zone along the Kenyan coast including a test for the use of higher-taxon surrogacy. South African Journal of Marine Sciences 30, 2533.Google Scholar
DHN (Diretoria de Hidrografia e Navegação) (1968) Resumo histórico e origem da Ilha da Trindade. Rio de Janeiro: Departamento de Geofísica da Diretoria de Hidrografia e Navegação. [In Portuguese]Google Scholar
Folk, R.L. and Ward, W.C. (1957) Brazos River Bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 326.Google Scholar
Foster, S.J. (1998) Osmotic stress tolerance and osmoregulation of intertidal and subtidal nematodes. Journal of Experimental Marine Biology and Ecology 224, 109125.Google Scholar
Fricke, A.F. and Flemming, B.W. (1983) Selective microhabitat colonisation by interstitial meiofauna as a function of grain size. In McLachlan, A. and Erasmus, T. (eds) Sandy beaches as ecosystems. The Hague: W. Junk, pp. 421431.Google Scholar
Gheskiere, T., Hoste, E., Vanaverbeke, J., Vincx, M. and Degraer, S. (2004) Horizontal zonation patterns and feeding structure of marine nematode associations on a macrotidal, ultra-dissipative sandy beach (De Panne, Belgium). Journal of Sea Reseach 55, 221226.Google Scholar
Giere, O. (2009) Meiobenthology: the microscopic fauna in aquatic sediments. Berlin: Springer-Verlag.Google Scholar
Gingold, R., Ibarra-Obando, S.E. and Rocha-Olivares, A. (2011) Spatial aggregation patterns of free-living marine nematodes in contrasting sandy beach micro-habitats. Journal of the Marine Biological Association of the United Kingdom 91, 615622.Google Scholar
Gourbault, N. (1981) Les peuplements de nematodes du chenal de la baie de Morlaix (premiers donnees). Cahiers de Biologie Marine 22, 6582.Google Scholar
Gourbault, N. and Renaud-Mornant, J. (1990) Micro-meiofaunal community structure and nematode diversity in a lagoonal ecosystem (Fangataufa, Eastern Tuamotu Archipelago). Marine Ecology 11, 173189.Google Scholar
Gourbault, N. and Warwick, R.M. (1994) Is the determination of meiobenthic diversity affected by the sampling method in sandy beaches? Marine Ecology 15, 267279.Google Scholar
Gourbault, N., Warwick, R.M. and Helléouet, M.N. (1998) Spatial and temporal variability in the composition and structure of meiobenthic associations (especially nematodes) in tropical beaches (Guadeloupe, FWI). Cahiers de Biologie Marine 39, 2939.Google Scholar
Gray, J.S. (2002) Species richness of marine soft sediments. Marine Ecology Progress Series 244, 285297.Google Scholar
Guo, Y., Gong, P. and Amundson, R. (2003) Pedodiversity in the United States of America. Geoderma 117, 99115.Google Scholar
Heip, C., Vincx, M. and Vranken, G. (1985) The ecology of marine nematodes. Oceanography and Marine Biology Annual Review 23, 399489.Google Scholar
Jesús-Navarrete, A. (2007) Littoral free living nematode fauna of Socorro Island, Colima, Mexico. Hidrobiológica 17, 6166.Google Scholar
McLachlan, A. and Brown, A.C. (2006) The ecology of sandy shores. Burlington, MA: Academic Press.Google Scholar
Miranda, L.B. and Castro Filho, B.M. (1982) Geostrophic flow conditions of the Brazil current at 19°S. Ciencia Interamericana 22, 4448.Google Scholar
Moens, T. and Vincx, M. (1997) Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77, 211227.Google Scholar
Moens, T. and Vincx, M. (2000) Temperature and salinity constraints on the life cycle of two brackish-water bacterivorous nematode species: assessing niches from food absorption and respiration experiments. Marine Ecology Progress Series 53, 137154.Google Scholar
Netto, S.A., Attrill, M.J. and Warwick, R.M. (1999a) The effect of a natural water-movement related disturbance on the structure of meiofauna and macrofauna communities in the intertidal sand flat of Rocas Atoll (NE Brazil). Journal of Sea Research 42, 291302.Google Scholar
Netto, S.A., Attrill, M.J. and Warwick, R.M. (1999b) Sublitoral meiofauna and macrofauna of Rocas Atoll (NE Brazil): indirect evidence of a topographically controlled front. Marine Ecology Progress Series 179, 175186.Google Scholar
Netto, S.A., Attrill, M.J. and Warwick, R.M. (2003) The relationship between benthic fauna, carbonate sediments and reef morphology in reef-flat tidal pools of Rocas Atoll (North-East Brazil). Journal of the Marine Biological Association of the United Kingdom 83, 425432.Google Scholar
Netto, S.A., Warwick, R.M. and Attrill, M.J. (1999c) Meiobenthic and macrobenthic community structure in carbonate sediments of Rocas Atoll (Northeast, Brazil). Estuarine, Coastal and Shelf Science 48, 3950.Google Scholar
Nicholas, W.L. and Hodda, M. (1999) The free-living nematodes of a temperate, high energy, sandy beach, faunal composition and variation over space and time. Hydrobiologia 394, 113127.Google Scholar
Ólafsson, E. (1991) Intertidal meiofauna of four sandy beaches in Iceland. Ophelia 33, 5565.Google Scholar
Pavlyuk, O.N. and Trebukhov, Y.A. (2011) Intertidal meiofauna of Jeju Island, Korea. Ocean Science Journal 46, 111.Google Scholar
Pereira, N.S., Marins, Y.O., Silva, A.M.C., Oliveira, P.G.V. and Silva, M.B. (2008) Influência do ambiente sedimentar na distribuição dos organismos meiobentônicos do Atol das Rocas. Estudos Geológicos 18, 6780. [In Portuguese]Google Scholar
Pereira-Filho, G.H., Amado-Filho, G.M., Guimarães, S.M.P.B., Moura, R.L., Sumida, P.Y.G., Abrantes, D.P., Bahia, R.G., Güth, A.Z., Jorge, R.R. and Filho, R.B.F. (2011) Reef fish and benthic associations of the Trindade and Martin Vaz island group, Southwestern Atlantic. Brazilian Journal of Oceanography 59, 201212.Google Scholar
Riera, R., Núñez, J. and Brito, M.C. (2013) Temporal dynamics of shallow subtidal meiobenthos from a beach in Tenerife (Canary Islands, northeast Atlantic Ocean). Acta Oceanologica 32, 4454.Google Scholar
Riera, R., Núñez, J. and Brito, M.C. (2014) Temporal variations of shallow subtidal meiofauna in Los Cristianos Bay (Tenerife, Canary Islands, NE Atlantic Ocean). Brazilian Journal of Oceanography 62, 167177.Google Scholar
Riera, R., Núñez, J., Brito, M.C. and Tuya, F. (2011) Temporal variability of a subtropical intertidal meiofaunal assemblage: contrasting effects at the species and assemblage-level. Vie et milieu – Life and Environment 61, 129137.Google Scholar
Riera, R., Núñez, J., Brito, M.C. and Tuya, F. (2012) Differences in diversity, structure, and variability between intertidal and subtidal meiofaunal associations. Ciencias Marinas 38, 677693.Google Scholar
Rodríguez, G.J., López, J. and Jaramillo, E. (2001) Community structure of the intertidal meiofauna along a gradient of morphodynamic sandy beach types in southern Chile. Revista Chilena de Historia Natural 74, 885897.Google Scholar
Rowden, A.A., Dower, J.F., Schlacher, T.A., Consalvey, M. and Clark, M.R. (2010) Paradigms in seamount ecology: fact, fiction and future. Marine Ecology 31(Suppl. 1), 226241.Google Scholar
Semprucci, F., Colantoni, P., Baldelli, G., Rocchi, M. and Balsamo, M. (2010) The distribution of meiofauna on back-reef sandy platforms in the Maldives (Indian Ocean). Marine Ecology 31, 592607.Google Scholar
Semprucci, F., Colantoni, P., Baldelli, G., Sbrocca, C., Rocchi, M. and Balsamo, M. (2013) Meiofauna associated with coral sediments in the Maldivian subtidal habitats (Indian Ocean). Marine Biodiversity 43, 189198.Google Scholar
Semprucci, F., Colantoni, P., Sbrocca, C., Baldelli, G., Rocchi, M. and Balsamo, M. (2011) Meiofauna in sandy back-reef platforms differently exposed to the monsoons in the Maldives (Indian Ocean). Journal of Marine Systems 87, 208215.Google Scholar
Silveira, I.C., Schmidt, A.C.K., Campos, E.J.D., Godoi, S.S. and Ikeda, I.A. (2000) Corrente do Brasil ao largo da costa leste brasileira. Revista Brasileira de Oceanografia 48, 171183. [In Portuguese]Google Scholar
Snelgrove, P.V.R. (1999) Getting to the bottom of marine biodiversity: sedimentary habitats. Bioscience 49, 129138.Google Scholar
Suguio, K. (1973) Introdução à sedimentologia. São Paulo: Edgard Blucher, 317 pp. [In Portuguese]Google Scholar
Urban-Malinga, L.K., Gheskiere, T.l.A., Jankowska, K., Opaliñski, K. and Malinga, M. (2004) Composition and distribution of meiofauna, including nematode genera, in two contrasting Arctic beaches. Polar Biology 27, 447457.Google Scholar
Vanaverbeke, J., Bezerra, T.N., Braeckman, U., de Groote, A., de Meester, N., Deprez, T., Derycke, S., Gilarte, P., Guilini, K., Hauquier, F., Lins, L., Maria, T., Moens, T., Pape, E., Smol, N., Taheri, M., Van Campenhout, J., Vanreusel, A., Wu, X. and Vincx, M. (2015) Nemys: world database of free-living marine nematodes. http://nemys.ugent.be.Google Scholar
Vanaverbeke, J., Gheskiere, T. and Vincx, M. (2000) The meiobenthos of subtidal sandbanks on the Belgian continental shelf (Southern Bight of the North Sea). Estuarine, Coastal and Shelf Science 51, 637649.Google Scholar
Venekey, V., Esteves, A. and Fonseca-Genevois, V. (2009) Distribuição espacial da meiofauna no arquipélago de São Pedro e São Paulo, com especial referência aos Nematoda livres. In Mohr, L.V., Castro, J.W.A., Costa, P.M.S. and Alves, R.J.V. (eds) Ilhas Oceânicas Brasileiras: da pesquisa ao manejo. Volume II. Brasília: Ministério do Meio Ambiente, pp. 369386. [In Portuguese]Google Scholar
Venekey, V., Fonseca-Genevois, V.G. and Santos, P.J.P. (2010) Biodiversity of free-living marine nematodes on the coast of Brazil: a review. Zootaxa 2568, 3966.Google Scholar
Venekey, V. and Santos, T.M.T. (2017) Free-living nematodes of Brazilian oceanic islands: revealing the richness in the most isolated marine habitats of Brazil. Nematoda 4, e122016.Google Scholar
Vincx, M., Bett, B.J., Dinet, A., Ferrero, T., Gooday, A.J., Lambshead, P.J.D., Pfannkuche, O., Soltwedel, T. and Vanreusel, A. (1994) Meiobenthos of the deep Northeast Atlantic. Advances in Marine Biology 30, 188.Google Scholar
Warwick, R.M., Platt, H.M. and Somerfield, P.J. (1998) Free-living marine nematodes. Part III. British Monhysterids. Synopses of the British fauna (New series) 53. Shrewsbury: Field Studies Council, 296 pp.Google Scholar
Wieser, W. (1953) Die Beziehung zwischen mundhoehlengsalt, ernaehrungsweise und vorkommen beifrelebenden marinen Nematoden. Eine oekologisch: morphologische studie. Arkive Zoologische II(4), 439484. [In German]Google Scholar
Wild, C., Rasheed, M., Jantzen, C., Cook, P., Stuck, U., Huettel, M. and Boetius, A. (2005) Benthic metabolism and degradation of natural particulate organic matter carbonate and silicate reef sands of the northern Red Sea. Marine Ecology Progress Series 298, 6978.Google Scholar
Supplementary material: File

Santos and Venekey supplementary material

Santos and Venekey supplementary material 1

Download Santos and Venekey supplementary material(File)
File 20.3 KB
Supplementary material: File

Santos and Venekey supplementary material

Santos and Venekey supplementary material 2

Download Santos and Venekey supplementary material(File)
File 27.2 KB