Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T11:19:57.763Z Has data issue: false hasContentIssue false

Meiofauna and harpacticoid copepods in different habitats of a Mediterranean seagrass meadow

Published online by Cambridge University Press:  03 April 2013

Thibaud Mascart*
Affiliation:
Marine Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium Laboratory of Oceanology, University of Liège, Allée du 6 août B6, B-4000 Liège, Belgium
Gilles Lepoint
Affiliation:
Laboratory of Oceanology, University of Liège, Allée du 6 août B6, B-4000 Liège, Belgium
Marleen De Troch
Affiliation:
Marine Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium
*
Correspondence should be addressed to: T. Mascart, Marine Biology, Ghent University, Krijgslaan 281-S8, B-9000 Ghent, Belgium email: thibaud.mascart@ugent.be

Abstract

This study investigated whether associated meiobenthic communities, especially harpacticoid copepods, differed amongst habitats. Five pre-defined habitats within and next to the Posidonia oceanica seagrass meadow were sampled: living seagrass canopy leaves (LL), small (SMF) and large (LMF) macrophytodetritus fragment accumulations and sand, bare (BS) and covered (CS). The highest meiofauna abundances were recorded in the BS for the core sampled habitats (BS, CS, SMF and LMF) and in the LMF for seagrass material habitats (SMF, LMF and LL). Harpacticoid copepods were the most abundant taxon in all habitats. The assemblage composition at copepod family level showed two distinct habitats clusters: a leaf (LMF and LL) and a sediment cluster (BS, CS and SMF). Subsequently, stable isotope analyses were conducted to analyse the relationship between copepods and their potential food sources in seagrass material habitats. Based on δ13C isotopic analyses and SIAR mixing model, harpacticoid copepods relied for 70% on epiphytes and for 30% on P. oceanica leaf material in the LMF and LL habitats.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armonies, W. (1988) Active emergence of meiofauna from intertidal sediment. Marine Ecology Progress Series 43, 151159.CrossRefGoogle Scholar
Bay, D. (1984) A field study of the growth dynamics and productivity of Posidonia oceanica (L.) delile in Calvi Bay, Corsica. Aquatic Botany 20, 4364.CrossRefGoogle Scholar
Bell, S.S. and Hicks, G.R.F. (1991) Marine landscape and faunal recruitment—a field test with seagrasses and copepods. Marine Ecology Progress Series 73, 6168.CrossRefGoogle Scholar
Bell, S.S., Kern, J.C. and Walters, C. (1984) Sampling for meiofaunal taxa in seagrass systems. In Thompson, M.-F. (ed.) Biology of benthic marine organisms. New Delhi: Oxford IBH.Google Scholar
Bonsdorff, E. (1992) Drifting algae and zoobenthos—effects on settling and community structure. Netherlands Journal of Sea Research 30, 5762.CrossRefGoogle Scholar
Boxshall, G.A. and Hasley, S.H. (2004) An introduction to copepods diversity. London: The Ray Society.Google Scholar
Caramujo, M.J., Boschker, H.T.S. and Admiraal, W. (2008) Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology 53, 7790.CrossRefGoogle Scholar
Cardona, L., Revelles, M., Sales, M., Aguilar, A. and Borrell, A. (2007) Meadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems. Marine Ecology Progress Series 335, 123131.CrossRefGoogle Scholar
Carlier, A., Riera, P., Amouroux, J.-M., Bodiou, J.-Y., Escoubeyrou, K., Desmalades, M., Caparros, J. and Gremare, A. (2007) A seasonal survey of the food web in the Lapalme Lagoon (northwestern Mediterranean) assessed by carbon and nitrogen stable isotope analysis. Estuarine, Coastal and Shelf Science 73, 299315.CrossRefGoogle Scholar
Cebrian, J. and Duarte, C.M. (2001) Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquatic Botany 70, 295309.CrossRefGoogle Scholar
Clarke, K.R. and Gorley, R.N. (2006) PRIMER v6. User Manual/Tutorial. Plymouth: PRIMER-E.Google Scholar
Danovaro, R. (1996) Detritus–bacteria–meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Marine Biology 127, 113.CrossRefGoogle Scholar
Danovaro, R., Gambi, C., Manini, E. and Fabiano, M. (2000) Meiofauna response to a dynamic river plume front. Marine Biology 137, 359370.CrossRefGoogle Scholar
Danovaro, R., Gambi, C. and Mirto, S. (2002) Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Marine Ecology Progress Series 234, 95104.CrossRefGoogle Scholar
Dauby, P. and Poulicek, M. (1995) Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquatic Botany 52, 217228.CrossRefGoogle Scholar
De Troch, M., Chepurnov, V.A., Vincx, M. and Olafsson, E. (2008) The effect of Fucus vesiculosus on the grazing of harpacticoid copepods on diatom biofilms. Journal of Sea Research 60, 139143.CrossRefGoogle Scholar
De Troch, M., Cnudde, C., Vyverman, W. and Vanreusel, A. (2009) Increased production of faecal pellets by the benthic harpacticoid Paramphiascella fulvofasciata: importance of the food source. Marine Biology 156, 469477.CrossRefGoogle Scholar
De Troch, M., Gurdebeke, S., Fiers, F. and Vincx, M. (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). Journal of Sea Research 45, 4561.CrossRefGoogle Scholar
De Troch, M., Vandepitte, L., Raes, M., Suarez-Morales, E. and Vincx, M. (2005) A field colonization experiment with meiofauna and seagrass mimics: effect of time, distance and leaf surface area. Marine Biology 148, 7386.CrossRefGoogle Scholar
Dimech, M., Borg, J.A. and Schembri, P.J. (2006) Motile macroinvertebrate assemblages associated with submerged Posidonia oceanica litter accumulations. Biologia Marina Mediterranea 13, 130133.Google Scholar
Duarte, C.M., Middelburg, J.J. and Caraco, N. (2005) Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 18.CrossRefGoogle Scholar
Fonseca, G., Hutchings, P. and Gallucci, F. (2011) Meiobenthic communities of seagrass beds (Zostera capricorni) and unvegetated sediments along the coast of New South Wales, Australia. Estuarine, Coastal and Shelf Science 91, 6977.CrossRefGoogle Scholar
Fry, B., Macko, S.A. and Zieman, J.C. (1987) Review of stable isotopic investigation of food webs in seagrass meadows. Florida Marine Research Publications 42, 189209.Google Scholar
Gallmetzer, I., Pflugfelder, B., Zekely, J. and Ott, J.A. (2005) Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulations of Posidonia oceanica detritus. Marine Biology 147, 517523.CrossRefGoogle Scholar
Giere, O. (2009) Meiobenthology—the microscopic motile fauna of aquatic sediments. 2nd edition.Berlin: Springer.Google Scholar
Gobert, S., Kyramarios, M., Lepoint, G., Pergent-Martini, C. and Bouquegneau, J.M. (2003) Variations at different spatial scales of Posidonia oceanica (L.) Delile beds; effects on the physico-chemical parameters of the sediment. Oceanologica Acta 26, 199207.CrossRefGoogle Scholar
Hall, M.O. and Bell, S.S. (1993) Meifauna on the seagrass Thalassia testudinum. Population characteristics of harpacticoid copepods ans associations with algal epiphytes. Marine Biology 116, 137146.CrossRefGoogle Scholar
Hemminga, M.A. and Mateo, M.A. (1996) Stable carbon isotopes in seagrasses: variability in ratios and use in ecological studies. Marine Ecology Progress Series 140, 285298.CrossRefGoogle Scholar
Hicks, G.R. and Coull, B.C. (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanography and Marine Biology: an Annual Review 21, 67175.Google Scholar
Higgins, R. and Thiel, H. (1988) Introduction to the study of meiofauna. London: Smithsonian Institution Press.Google Scholar
Hooper, G.J. and Davenport, J. (2006) Epifaunal composition and fractal dimensions of intertidal marine macroalgae in relation to emersion. Journal of the Marine Biological Association of the United Kingdom 86, 12971304.CrossRefGoogle Scholar
Hulings, N.C. and Gray, J.S. (1971) A manual for the study of meiofauna. Smithsonian Contributions to Zoology 78, 183.Google Scholar
Huys, R. and Boxshall, G.A. (1991) Copepod evolution. London: The Ray Society, 159 pp.Google Scholar
Lang, K. (1948) Monographie der Harpacticiden. Lund: Hâkan Ohlssons boktryckeri.Google Scholar
Lang, K. (1965) Copepoda Harpacticoidea from the Californian Pacific Coast. Stockholm: Almqvist & Wiksell.Google Scholar
Lepoint, G., Cox, A.S., Dauby, P., Poulicek, M. and Gobert, S. (2006) Food sources of two detritivore amphipods associated with the seagrass Posidonia oceanica leaf litter. Marine Biology Research 2, 355365.CrossRefGoogle Scholar
Lepoint, G., Dauby, P., Fontaine, M., Bouquegneau, J.M. and Gobert, S. (2003) Carbon and nitrogen isotopic ratios of the seagrass Posidonia oceanica: depth-related variations. Botanica Marina 46, 555561.CrossRefGoogle Scholar
Lepoint, G., Defawe, O., Gobert, S., Dauby, P. and Bouquegneau, J.M. (2002) Experimental evidence for N recycling in the leaves of the seagrass Posidonia oceanica. Journal of Sea Research 48, 173179.CrossRefGoogle Scholar
Lepoint, G., Nyssen, F., Gobert, S., Dauby, P. and Bouquegneau, J.M. (2000) Relative impact of a seagrass bed and its adjacent epilithic algal community in consumer diets. Marine Biology 136, 513518.CrossRefGoogle Scholar
Losi, V., Montefalcone, M., Moreno, M., Giovannetti, E., Gaozza, L., Grondona, M. and Albertelli, G. (2012) Nematodes as indicators of environmental quality in seagrass (Posidonia oceanica) meadows of the NW Mediterranean Sea. Advances in Oceanography and Limnology 3, 6991.CrossRefGoogle Scholar
Mateo, M.A. and Romero, J. (1997) Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151, 4353.CrossRefGoogle Scholar
Mateo, M.A., Sanchez-Lizaso, J.L. and Romero, J. (2003) Posidonia oceanica ‘banquettes’: a preliminary assessment of the relevance for meadow carbon and nutrients budget. Estuarine, Coastal and Shelf Science 56, 8590.CrossRefGoogle Scholar
Mirto, S., Bianchelli, S., Gambi, C., Krzelj, M., Pusceddu, A., Scopa, M., Holmer, M. and Danovaro, R. (2010) Fish-farm impact on metazoan meiofauna in the Mediterranean Sea: analysis of regional vs. habitat effects. Marine Environmental Research 69, 3847.CrossRefGoogle ScholarPubMed
Mirto, S. and Danovaro, R. (2004) Meiofaunal colonisation on artificial substrates: a tool for biomonitoring the environmental quality on coastal marine systems. Marine Pollution Bulletin 48, 919926.CrossRefGoogle ScholarPubMed
Nieuwenhuize, J., Maas, Y.E.M. and Middelburg, J.J. (1994) Rapid analysis of organic-carbon and nitrogen in particulate materials. Marine Chemistry 45, 217224.CrossRefGoogle Scholar
Norkko, J., Bonsdorff, E. and Norkko, A. (2000) Drifting algal mats as an alternative habitat for benthic invertebrates: species specific responses to a transient resource. Journal of Experimental Marine Biology and Ecology 248, 79104.CrossRefGoogle ScholarPubMed
Novak, R. (1984) A study in ultra-ecology—microorganisms on the seagrass Posidonia oceanica. Marine Ecology—Pubblicazioni Della Stazione Zoologica Di Napoli I 5, 143190.CrossRefGoogle Scholar
Parnell, A.C., Inger, R., Bearhop, S. and Jackson, A.L. (2010) Source partitioning using stable isotopes: coping with too much variation. Plos One 5(3). Available at: http://www.plosone.org/article/info:doi/10.1371/journal.pone.0009672.CrossRefGoogle ScholarPubMed
Peachey, R.L. and Bell, S.S. (1997) The effects of mucous tubes on the distribution, behavior and recruitment of seagrass meiofauna. Journal of Experimental Marine Biology and Ecology 209, 279291.CrossRefGoogle Scholar
Pergent-Martini, C., Rico-Raimondino, V. and Pergent, G. (1994) Primary production of Posidonia oceanica in the Mediterranean Basin. Marine Biology 120, 915.CrossRefGoogle Scholar
Pergent, G., Rico-Raimondino, V. and Pergent-Martini, C. (1997) Fate of primary production in Posidonia oceanica meadows of the Mediterranean. Aquatic Botany 59, 307321.CrossRefGoogle Scholar
Romero, J., Pergent, G., Pergentmartini, C., Mateo, M.A. and Regnier, C. (1992) The detritic compartement in a Posidonia oceanica meadow—litter features, decomposition rates and mineral stocks. Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 13, 6983.CrossRefGoogle Scholar
Sturaro, N., Caut, S., Gobert, S., Bouquegneau, J.-M. and Lepoint, G. (2010) Trophic diversity of idoteids (Crustacea, Isopoda) inhabiting the Posidonia oceanica litter. Marine Biology 157, 237247.CrossRefGoogle Scholar
Thistle, D. and Sedlacek, L. (2004) Emergent and non-emergent species of harpacticoid copepods can be recognized morphologically. Marine Ecology Progress Series 266, 195200.CrossRefGoogle Scholar
Vander Zanden, M.J. and Rasmussen, J.B. (2001) Variation in delta N-15 and delta C-13 trophic fractionation: Implications for aquatic food web studies. Limnology and Oceanography 46, 20612066.CrossRefGoogle Scholar
Vizzini, S., Sara, G., Michener, R.H. and Mazzola, A. (2002) The role and contribution of the seagrass Posidonia oceanica (L.) Delile organic matter for secondary consumers as revealed by carbon and nitrogen stable isotope analysis. Acta Oecologica—International Journal of Ecology 23, 277285.CrossRefGoogle Scholar
Webb, D.G. (1990) Intrashoot distributions of leaf dwelling harpacticoid copepods on the seagrass Zostera marina—implications for sampling design. Hydrobiologia 206, 155162.CrossRefGoogle Scholar
Wyckmans, M., Chepurnov, V.A., Vanreusel, A. and De Troch, M. (2007) Effects of food diversity on diatom selection by harpacticoid copepods. Journal of Experimental Marine Biology and Ecology 345, 119128.CrossRefGoogle Scholar