Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T01:49:52.031Z Has data issue: false hasContentIssue false

Numbers and central projections of crab second maxilla motor Neurones

Published online by Cambridge University Press:  11 May 2009

J. B. Pilkington
Affiliation:
Department of Zoology, University of Otago, Dunedin, New Zealand
D. W. MacFarlane
Affiliation:
Department of Zoology, University of Otago, Dunedin, New Zealand

Extract

The second maxilla is innervated typically by 35 motor neurones in Nectocarcinus antarcticus and about 39 in Cancer novaezelandiae. Muscles are multiply innervated. Within one species variations in the number of motor neurones innervating any muscle do occur but are not common.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1978

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altman, J. S. & Tyrer, N. M. 1974. Insect flight as a system for the studyof development of neuronal connections. In Experimental Analysis of Insect Behaviour (ed. L. Barton Browne) pp. 159179. Berlin: Springer-Verlag.Google Scholar
Bone, Q. 1972. Some notes on histological methods for peripheral nerves. Medical Laboratory Technology, 29, 319324.Google ScholarPubMed
Cochran, D. M. 1935. The skeletal musculature of the blue crab Callinectes sapidus Rathbun. Smithsonian Miscellaneous Collections, 92 (9), 76 pp.Google Scholar
Davis, W. J. 1968. The neuromuscular basis of lobster swimmeret beating. Journal of Experi-mental Zoology, 168, 363378.CrossRefGoogle Scholar
Davis, W. J. 1971. Functional significance of motoneuron size and soma position in swimmeret system of the lobster. Journal of Neurophysiology, 34, 274288.CrossRefGoogle ScholarPubMed
Evoy, W. H. & Cohen, M. J. 1971. Central and peripheralcontrol of arthropod movements. Advances in Comparative Physiology and Biochemistry, 4, 225265.CrossRefGoogle ScholarPubMed
Govind, C. K. Atwood, H. L. & Maynakd, D. M. 1975. Innervation and neuromuscular physiology of intrinsic foregut muscles in the blue crab andspiny lobster. Journal of Comparative Physiology, 96, 185204.CrossRefGoogle Scholar
Henneman, E. Somgen, G. & Carpenter, D. O. 1965. Functional significance of cell size in spinal motoneurons. Journal of Neurophysiology, 28, 581598.CrossRefGoogle ScholarPubMed
Hoyle, G. & Burrows, M. 1973. Neural mechanisms underlying behaviour in the locust Schistocerca gregaria. I. Physiology of identified motoneurons in the metathoracic ganglia. Journal of Neurobiology, 4, 341.Google ScholarPubMed
Kennedy, D. 1975. Comparative strategies in the investigation of neural networks. Journal of Experimental Zoology, 194, 3549.CrossRefGoogle ScholarPubMed
Kennedy, D. Selverston, A. I. & Remler, M. P. 1969. Analysis of restricted neural networks. Science, New York, 164, 14881496.Google ScholarPubMed
King, D. G. 1976. Organisation of crustacean neuropil. I. Patterns of synapticconnections in lobster stomatogastric ganglia. Journal of Neurocytology, 5, 207237.CrossRefGoogle Scholar
Mcmahon, T. 1973. Size and shape in biology. Science, NewYork, 179, 12011204.Google ScholarPubMed
Maynard, D. M. 1961. Thoracic neurosecretory structures in brachyura. I. Grossanatomy. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 121, 316329.CrossRefGoogle Scholar
Maynard, D. M. 1967. Organisation of central ganglia. In Invertebrate Nervous Systems: Their Significance for Mammalian Neurophysiology (ed. C. A. G. Wiersma), pp. 231255. Chicago: University of Chicago Press.Google Scholar
Mendelson, M. 1971. Oscillator neurones in crustacean ganglia. Science, New York, 171, 11701173.Google ScholarPubMed
Miller, P. L. 1973. Spatial and temporal changes in the coupling ofcockroach spiracles to ventilation. Journal of Experimental Biology, 59, 137148.CrossRefGoogle Scholar
Pantin, C. F. A. 1946. Notes on Microscopical Technique for Zoologists. 77 pp. Cambridge: Cambridge University Press (reprinted 1969).Google Scholar
Pasztor, V. M. 1968. The neurophysiology of respiration in decapod Crustacea. I. The motor system. Canadian Journal of Zoology, 46, 585596.CrossRefGoogle ScholarPubMed
Paul, D. H. 1972. Decremental conduction over 'giant' afferent processes in an arthropod. Science, New York, 176, 680682.Google Scholar
Pilkington, J. B. 1976. Experimental coupling of crab (Carcinus maenas) secondmaxilla neural motor to an alternating current. Experientia, 32, 14351437.CrossRefGoogle Scholar
Pilkington, J. B. & Simmers, A. J. 1973. An analysis ofbailer movements responsible for gill ventilation in the crab, Cancer novae-zelandiae. Marine Behaviour and Physiology, 2, 7395.CrossRefGoogle Scholar
Sandeman, D. C 1969. The site of synaptic activity and impulse initiation in an identified motoneuron in the crab brain. Journal of Experimental Biology, 50, 771784.CrossRefGoogle Scholar
Selverston, A. & Mulloney, B. 1972. Antidromic action potentials fail to demonstrate known interaction between neurones. Science, New York, 177, 6972.Google Scholar
Tyrer, N. M. &Altman, J. S. 1974. Motor and sensory flight neurones in a locust demonstrated using cobalt chloride. Journal of Comparative Neurology, 157, 117137.CrossRefGoogle Scholar
Welsh, J. H. Smith, R. I. & Kammer, A. E. 1968. Laboratory Exercises in Invertebrate Physiology. 3rd ed. x, 219 pp. Minneapolis: Burgess.Google Scholar
Wiens, T. J. & Gerstein, G. L. 1975. Cross-connections among crayfish clawefferents. Journal of Neurophysiology, 38, 909921.CrossRefGoogle Scholar
Wilkens, J. L. 1976. Neuronal control of respiration in decapod Crustacea. Federation Proceedings. Federation of American Societies for Experimental Biology, 35,2000–2006.Google Scholar
Wilkens, J. A. Wilkens, L. A. & Mcmahon, B. R. 1974. Central control of cardiac and scaphognathite pacemakers in the crab Cancer magister. Journal of Comparative Physiology, 90, 89104.CrossRefGoogle Scholar
Wilkens, J. L. & Young, R. E. 1975. Patterns of bilateral co-ordination ofscaphognathite rhythms in the lobster Homarus americanus. Journal of Experimental Biology, 63, 219235.CrossRefGoogle Scholar
Wine, J. J. Mittenthal, J. E. & Kennedy, D. 1974. The structure of tonic flexor motoneurons in crayfish abdominal ganglia. Journal of Comparative Physiology, 93, 315335.CrossRefGoogle Scholar
Young, R. E. 1975. Neuromuscular control of ventilation in the crabCarcinus maenas. Journal of Comparative Physiology, 101A, 138.CrossRefGoogle Scholar