Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:01:38.706Z Has data issue: false hasContentIssue false

On the Biology of Calanus finmarchicus. Part VI. Oxygen Consumption in Relation to Environmental Conditions

Published online by Cambridge University Press:  11 May 2009

A. P. Orr
Affiliation:
Marine Station, Millport.

Summary

1. Experiments have been done to determine the oxygen utilisation by male, female and Stage V Calanus under different environmental conditions.

2. An initial fall in the respiration of adult Calanus was observed during the first few hours after capture. Stage V do not show this clearly. It is found more often in winter than in summer.

3. The lethal temperature varies from 24° C. in winter to 26° C. in summer. Stage V Calanus are more resistant to high temperatures than adults.

4. Respiration rises with increase of temperature from 0° C. to 20° C. The increase does not follow van't Hoff's law. The oxygen consumption of males and females is about the same, while that of Stage V is lower. Above 20° C. there is a harmful effect.

5. Within the limits studied (pH 7.4–pH 8.5) change in hydrogen-ion concentration has no effect on respiration.

6. Calanus are unaffected by an increase in the oxygen content of the water, but are sensitive to low oxygen tensions. Below a concentration of about 3 ml. per litre the respiration decreases. At concentrations between 1 and 2 ml. per litre they are killed. They are more resistant at 5° C. than at 15° C. and Stage V are more resistant than adults at both these temperatures.

7. Calanus can become acclimatised to salinities as low as 35–40% seawater (S=12‰–13.6‰), but their respiration is lowered at a salinity of 50%.

8. Light has a striking effect on Calanus. It may increase the respiration by 100% or more. This effect can be detected also in the sea, but not below 5 metres. Continuous exposure to light is harmful.

9. The bearing of these results on the distribution of Calanus is discussed.

10. From the amount of oxygen used in respiration, calculations of the food required are made and these are compared with the results given by Putter for Calanus and other copepods.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1935

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, W. T., and Robinson, F. W. 1925. An Oxalic Acid-Uranyl Sulphate Ultra-violet Radiometer. Journ. Amer. Chem. Soc., 47, p. 718.CrossRefGoogle Scholar
Beadle, L. C. 1931. The Effect of Salinity Changes on the Water Content and Respiration of Marine Invertebrates. Journ. Exp. Biol., 8, p. 211.CrossRefGoogle Scholar
Bělehrádek, J. 1930. Temperature coefficients in Biology. Biol. Rev., 5, p. 30.CrossRefGoogle Scholar
Brandt, K. 1898. Beiträge zur Kenntniss der chemischen Zusammensetzung des Planktons. Wiss. Meeresunters., 3, Abt. Kiel, p. 43.Google Scholar
Brandt, K., and Raben, E. 19191922. Zur Kenntniss der chemischen Zusammensetzung des Planktons und einiger Bodenorganismen. Wiss. Meeresunters., N.F., 19, Abt. Kiel, p. 175.Google Scholar
Brown, L. A. 1929. The Natural History of Cladocerans in relation to Temperature. I. Distribution and Temperature Limits for vital activities. Amer. Nat., 63 (686), p. 248.CrossRefGoogle Scholar
Ege, R., and Krogh, A. 19151916. On the relation between the temperature and the respiratory exchange in fishes. Internat. Rev. d. ges. Hydrobiol. u. Hydrograph., 7, p. 48.CrossRefGoogle Scholar
Esterley, C. O. 1919. Reactions of various Plankton Animals with Reference to their Diurnal Migrations. Univ. Calif. Publ. Zool., 19, p. 1.Google Scholar
Farran, G. P. 1911. Copepoda. Cons. Perm. Internat. p. l'explor. d. 1. mer. Bull, trim., Part 2, p. 81.Google Scholar
Harvey, J. M. 1930. The Action of Light on Calanus finmarchicus (Gunner) as determined by its effect on the Heart rate. Contrib. Can. Biol., 5, p. 83.CrossRefGoogle Scholar
Henze, M. 1910. Uber den Einfmss des Sauerstoffdrucks auf den Gaswechsel einiger Meerestiere. Biochem. Zeitschr., 26, p. 255.Google Scholar
Huntsman, A. G. 1925. Limiting Factors for Marine Animals. I. The lethal effect of Sunlight. Contrib. Can. Biol., 2, p. 81.CrossRefGoogle Scholar
Huntsman, A. G., and Sparks, M. L. 1925. Limiting Factors for Marine Animals. III. Relative resistance to high temperatures. Contrib. Can. Biol., 2, p. 95.CrossRefGoogle Scholar
Hyman, L. H. 1930. The effect of Oxygen Tension on Oxygen consumption in Planaria and some Echinoderms. Physiol. Zool., 2 (4), p. 505.CrossRefGoogle Scholar
Keys, A. B. 1930. The Measurement of the Respiratory Exchange of Aquatic Animals. Biol. Bull., 59, p. 187.CrossRefGoogle Scholar
Klugh, A. B. 1929. The Effect of the U.V. Component of Sunlight on certain Marine Organisms. Canad. J. Research., 1 (1), p. 100.CrossRefGoogle Scholar
Klugh, A. B. 1930. The Effect of the U.V. Component of Sunlight on certain aquatic Organisms. Canad. J. Research., 3 (2), p. 104.CrossRefGoogle Scholar
Kreps, E. 1929. Untersuchungen über den respiratorischen Gaswechsel bei Balanus crenatus bei verschiedenem Salzgehalt des Aussenmilieus. I. Mitt. über den Sauerstoffverbrauch im Wassermilieu bei verschiedenem Salzgehalt. Pflüger's Arch. f. d. ges. Physiol., 222, p. 215.CrossRefGoogle Scholar
Krogh, A. 1931. Dissolved substances as Food of Aquatic Organisms. Biol. Rev., 6, p. 412.CrossRefGoogle Scholar
Lepeschkin, W. W. 1931. Some Experiments on the Influence of Light and Poisons on Marine Copepods, with reference to their Daily Migration. Bull. Scripps Inst. Oceanog., 3, p. 33.Google Scholar
Marshall, S.M., Nicholls, A. G., and Orr, A. P. 1934. On the Biology of Calanus finmarchicus. V. Seasonal Distribution, Size, Weight and Chemical Composition in Loch Striven in 1933, and their relation to the Phytoplankton. Journ. Mar. Biol. Assoc., 20, p. 793.CrossRefGoogle Scholar
Marshall, S. M., and Orr, A. P. 1927. The Relation of the Plankton to some Chemical and Physical Factors in the Clyde Sea Area. Journ. Mar. Biol. Assoc., 14, p. 837.CrossRefGoogle Scholar
Nikitin, W. N. 1931. Die untere Planktongrenze und deren Verteilung im Schwarzen Meer. Internat. Rev. d. ges. Hydrobiol. u. Hydrograph., 25, p. 102.CrossRefGoogle Scholar
Orr, A. P. 1934. On the Biology of Calanus finmarchicus. IV. Seasonal Changes in the Weight and Chemical Composition of Calanus from Loch Fyne. Journ. Mar. Biol. Assoc., 20, p. 613.CrossRefGoogle Scholar
Ostenfeld, C. H. 1913. De danske Farvandes Plankton i Aarene 1898–1901. III. Phytoplankton og Protozoer (avec un résumé en français). K. Danske Vidensk. selsk. Skr. Raekke 7 Naturvid. Afd., 9, p. 113.Google Scholar
Powers, E. B. 1930. The Relation between pH and Aquatic Animals. Amer. Nat., 64 (693), p. 342.CrossRefGoogle Scholar
Pütter, A. 1909. Die Ernährung der Wassertiere und der Stoffhaushalt der Gewässer. Jena 1909, pp. 1168.Google Scholar
Pütter, A. 1922. Die Frage der parenteralen Ern–hrung der Wassertiere. Biol. Centralbl., 42, p. 72.Google Scholar
Pütter, A. 1923. Der Stoffwechsel der Gopepoden (zugleioh ein Beispiel für die Verwendung der Korrelationsmethode in der Physiologie). Pflüger's Arch. f. d. g. Physiol., 201, p. 503.CrossRefGoogle Scholar
Pütter, A. 19241925. Die Emährung der Copepoden. Arch, für Hydrobiol., 15, p. 70.Google Scholar
Russell, P. S. 1928. The Vertical Distribution of Marine Macroplankton. VII. Observations on the Behaviour of Calanus finmarchicus. Journ. Mar. Biol. Assoc., 15, p. 429.CrossRefGoogle Scholar