Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T07:13:42.230Z Has data issue: false hasContentIssue false

On the Mode of Functioning of the Water Vascular System of Asterias Rubens L.

Published online by Cambridge University Press:  11 May 2009

John Binyon
Affiliation:
Department of Zoology, Royal Holloway College, London

Summary

Experiments reported in a previous paper have indicated a considerable water loss by isolated preparations of the tube feet of Asterias rubens when ligatured in the protracted state. Because of its specialized structure, the podial diameter remains constant throughout the stepping cycle and this simplifies the procedure for measuring the surface area. Measurements of the internal hydrostatic pressure within the tube foot ampulla systems shows a maximum of about 30 cm water to be reached during the protraction phase of the stepping cycle, falling to nearly zero during the resting period. From these data it is possible to calculate a value for the permeability to water of the tube foot membrane, and such a value is compared with other membranes.

By measurement of the total area of protracted tube foot membrane exposed by the animal when supporting itself in sea water, it is possible to arrive at a figure for the total water loss by the water vascular system. For a 50 g animal this amounts to some 0·5 ml./h. Experiments involving blocking or extirpating the madreporite, and with isolated arms, make it extremely improbable that this loss could be made good from this route.

As alternative mechanisms, a slight hypertonicity due to the presence of excess potassium, or water movement as a direct consequence of the operation of an ion pump are discussed. In view of the hydrostatic pressure within the water vascular system the possibility of its functioning as a physiological kidney is also discussed. A possible alternative function for the madreporite is put forward.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamber, R. C., 1921. Notes on some experiments on the water vascular system of Echinus. Proc. Lpool biol. Soc., Vol. 35, pp. 6470.Google Scholar
Binyon, J., 1961. Salinity tolerance and permeability to water of the starfish Asterias rubens L. J. mar. biol. Ass. U.K., Vol. 41, pp. 161–74.CrossRefGoogle Scholar
Binyon, J., 1962. Ionic regulation and mode of adjustment to reduced salinity of the starfish Asterias rubens L. J. mar. biol. Ass. U.K., Vol. 42, pp. 4964.CrossRefGoogle Scholar
Buddington, R. A., 1942. Ciliary transport system in Asterias forbesi. Biol. Bull., Woods Hole, Vol. 83, pp. 438–50.CrossRefGoogle Scholar
Chapman, G., 1958. The hydrostatic skeleton in invertebrates. Biol. Rev., Vol. 33, pp. 338–71.CrossRefGoogle Scholar
Conway, E. J., 1957. Microdiffusion Analysis and Volumetric Error. 465 pp. London: Crosby Lockwood.Google Scholar
Cuenot, L., 1891. Études morphologiques sur les Echinodermes. Arch. BioL, T. 11, pp. 312680.Google Scholar
Delage, Y., 1902. Effets De L'excision Du Madreporite Chez Les Asteries. C. R. Acad. Sci., Paris, T. 135, pp. 841–2.Google Scholar
Delaunay, H., 1931. L'Excrétion azotée des Invertébrés. Biol. Rev., Vol. 6, pp. 265301.CrossRefGoogle Scholar
Gemmill, J. F., 1914. The development and certain points in the adult structure of Asterias rubens L. Phil. Trans. B, Vol. 205, pp. 213–94.Google Scholar
Gemmill, J. F., 1915. On the ciliation of Asterids and on the question of ciliary nutrition in certain species. Proc. zool. Soc. Lond., 1915, pp. 115.CrossRefGoogle Scholar
Hartog, M. M., 1887. The true nature of the madreporic system. Ann. Mag. nat. Hist., Ser. 5, Vol. 20, pp. 321–6.CrossRefGoogle Scholar
Hyman, L. H., 1955. The Invertebrates: Echinodermata. 763 pp. New York: McGraw–Hill.Google Scholar
Irving, L., 1924. Ciliary tracts propelling haemolymph in Asterias. J. exp. Zool., Vol. 41, pp. 115–24.CrossRefGoogle Scholar
Kerkut, G. A., 1953. The forces exerted by the tube feet during locomotion. J. exp. Biol., Vol. 30, pp. 575–83.CrossRefGoogle Scholar
Koizumi, T., 1935 a. Studies on the exchange and the equilibrium of water and electrolytes in a holothurian Caudina chilensis (Müller). II. Velocity of permeation of chloride and sulphate through the isolated body wall of Caudina. Sci. Rep. Tôhoku Univ., Ser. 4., Vol. 10, pp. 33–9.Google Scholar
Koizumi, T., 1935 b. Studies on the exchange and the equilibrium of water and electrolytes in a holothurian Caudina chilensis (Müller). III. On the velocity of permeation of potassium, sodium, calcium, magnesium through isolated body wall. Sci. Rep. Tôhoku Univ., Ser. 4, Vol. 10, pp. 269–75.Google Scholar
Kruger, F., 1932. Versuche über die Wasserbewegung durch die Madreporenplatte von Echinus. Z. vergl. Physiol., Bd. 18, pp. 157–73.CrossRefGoogle Scholar
Lange, W., 1876. Beitrag zur Anatomie und Histologie der Asterien und Ophiuren. Morph. Jb., Bd. 2, pp. 241–86.Google Scholar
Lowndes, A. G., 1953. The densities of some common Echinodermata from Plymouth. Ann. Mag. nat. Hist., Ser. 12, Vol. 6, pp. 623–4.CrossRefGoogle Scholar
Ludwig, H., 1890. Über die function der Madreporenplatte und des Steincanals der Echinodermen. Zool. Anz., Bd. 13, pp. 377–9.Google Scholar
Mangold, E., 1908. Studien zur Physiologie des Nervensystems der Echinodermen. I. Die Fusschen der Seesterne und die Co-ordination ihre Bewegungen. Pflüg. Arch. ges. Physiol., Bd. 122, pp. 315–60.CrossRefGoogle Scholar
McBride, E. W., 1895. The development of Asterina gibbosa. Quart. J. micr. Sci., Vol. 38, pp. 339412.Google Scholar
Pantin, C. F. A. & Sawaya, P., 1953. Muscular action in Holothuria grisea. Zoologia, Satilde;o Paulo, Vol. 18, pp. 51–9.Google Scholar
Picken, L., 1936. Mechanism of urine formation in certain invertebrates. I. Arthropoda. J. exp. Biol., Vol. 13, pp. 309–28.CrossRefGoogle Scholar
Prosser, C. L. & Brown, F. A., 1961. Comparative Animal Physiology. 688 pp. Philadelphia: Saunders.Google Scholar
Ramsay, J. A., 1954. Movements of water and electrolytes in invertebrates. Symp. Soc. exp. Biol., Vol. 8, pp. 115.Google Scholar
Robinson, H. W. & Hogden, C. G., 1941. The gravimetric determination of blood proteins. J. biol. Chem., Vol. 140, pp. 853–4.CrossRefGoogle Scholar
Smith, J. E., 1946. The mechanics and innervation of the starfish tube foot ampulla systems. Phil. Trans. B, Vol. 232, pp. 279310.Google Scholar
Smith, J. E., 1947. The activities of the tube feet of Asterias rubens. Quart. J. micr. Sci., Vol. 88, pp. 114.Google ScholarPubMed
Yazaki, M., 1930. On the circulation of the perivisceral fluid in Caudina chilensis (Müller). Sci. Rep. Tôhoku Univ., Ser. 4, Vol. 5, pp. 403–14.Google Scholar