Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T17:59:33.015Z Has data issue: false hasContentIssue false

Oxygen consumption and osmoregulation in the shanny, Blennius pholis

Published online by Cambridge University Press:  11 May 2009

P. Milton
Affiliation:
Zoology Department, University of Reading

Extract

INTRODUCTION

It is well known that littoral teleosts, such as Blennius pholis, are on occasions subjected to considerable and abrupt variations in the salinity of their environment. Smith (1930) constructed a tentative model of the processes involved in the osmoregulation of teleosts; quantification of the various components of the Smith model has been extensive, but little attention has been paid to the respiratory stresses undergone by teleosts in fluctuating salinities.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Black, V. S., 1948. Changes in density, weight, chloride and swim-bladder gas in the killifish, Fundulus heteroclitus, in fresh water and sea water. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 95, pp. 8393.Google Scholar
Bounhiol, J. P., 1905. Experimental studies in aquatic respiration. Respiration of fish. Bull. scient. Fr. Belg., Vol. 39, pp. 277305.Google Scholar
Burden, C. E., 1956. The failure of hypophysectomized Fundulus to survive in fresh water. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 110, pp. 828.Google Scholar
Dam, L. Van, 1938. On the Utilization of Oxygen and the Regulation of Breathing in Some Aquatic animals (Dissertation). 143 pp. Groningen: Volharding.Google Scholar
Evans, D. H., 1967 a. Sodium, chloride and water balance of the intertidal teleost, Xiphister atropurpureus. I. Regulation of plasma concentration and body water content. J. exp. Biol., Vol. 47, pp. 513–17.Google Scholar
Evans, D. H., 1967 b. Sodium, chloride and water balance of the intertidal teleost, Xiphister atropurpureus. II. The role of the kidney and the gut. J. exp. Biol., Vol. 47, pp. 519–24.Google Scholar
Evans, D. H., 1967 c. Sodium, chloride and water balance of the intertidal teleost, Xiphister atropurpureus. III. The roles of simple diffusion, exchange diffusion, osmosis and active transport. J. exp. Biol., Vol. 47, pp. 525–33.CrossRefGoogle Scholar
Evans, D. H., 1969 a. Sodium, chloride and water balance of the intertidal teleost, Pholis gunnellus. J. exp. Biol., Vol. 50, pp. 179–91.CrossRefGoogle ScholarPubMed
Evans, D. H., 1969 b. Studies on the permeability to water of selected marine, freshwater and euryhaline teleosts. J. exp. Biol., Vol. 50, pp. 689705.CrossRefGoogle ScholarPubMed
Forster, R. P. & Berglund, F., 1953. Total electrolyte distribution in the blood and urine of the aglomerular teleost, Lophius piscatorius. Anat. Rec, Vol. 117, pp. 591–2.Google Scholar
Gibson, R. N., 1967. Experiments on the tidal rhythm of Blennius pholis. J. mar. biol. Ass. U.K., Vol. 47, pp. 97111.CrossRefGoogle Scholar
Ginetsiinski, A. G., Vasil'Yeva, V. F. & Natochin, Yu. V., 1961. The reaction of fishes to a change in the salinity of the medium. In: Essays on Physiological Evolution (Ed. J. W. S., Pringle), pp. 92106. (Transl. from the Russian.) Oxford: Pergamon Press.Google Scholar
Gordon, M. S., 1963. Chloride exchanges in rainbow trout (Salmo gairdnerii) adapted to different salinities. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 124, pp. 4554.CrossRefGoogle Scholar
Grant, W. C. & Pickford, G. E., 1959. Water drive factor in teleosts. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 116, pp. 429–35.CrossRefGoogle Scholar
Gray, I. E., 1954. Comparative study of the gill area of marine fishes. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 107, pp. 219–26.CrossRefGoogle Scholar
Holeton, G. F. & Randall, D. J., 1967 a. Changes in blood pressure in the rainbow trout during hypoxia. J. exp. Biol., Vol. 46, pp. 297305.CrossRefGoogle ScholarPubMed
Holeton, G. F. & Randall, D. J., 1967 b. The effect of hypoxia on the partial pressure of gases in the blood and water afferent and efferent to the gills of the rainbow trout. J. exp. Biol., Vol. 47, pp. 317–27.Google Scholar
Holliday, F. G. T. & Blaxter, J. H. S., 1961. The effects of salinity on herring after metamorphosis. J. mar. biol. Ass. U.K., Vol. 41, pp. 3748.CrossRefGoogle Scholar
House, C. R., 1963. Osmotic regulation in the brackish water teleost, Blennius pholis. J. exp. Biol., Vol. 40, pp. 87104.Google Scholar
Hughes, G. M., 1966. The dimensions of fish gills in relation to their function. J. exp. Biol., Vol. 45, pp. 177–95.Google Scholar
Hughes, G. M. & Grimstone, A. V., 1965. The fine structure of the secondary lamellae of the gills of Gadus pollachius. Q. Jl microsc. Sci., Vol. 106, pp. 343–53.Google Scholar
Hughes, G. M. & Knights, B., 1968. The effect of loading the respiratory pumps on the oxygen consumption of Callionymus lyra L. J. exp. Biol., Vol. 49, pp. 603–15.CrossRefGoogle Scholar
Hughes, G. M. & Umezawa, S., 1968. On respiration in the dragonet, Callionymus lyra L. J. exp. Biol., Vol. 49, pp. 565–82.Google Scholar
Jolyet, F. & Regnard, P., 1877 a. Physiological studies on the respiration of water animals. Arch. physiol. norm path., Vol. 4, pp. 4462.Google Scholar
Jolyet, F. & Regnard, P., 1877 b. Physiological studies on the respiration of water animals. Arch. physiol. norm path., Vol. 4, pp. 584633.Google Scholar
Keys, A. B., 1931. A study of the selective action of decreased salinity and of asphyxiation on the Pacific killifish, Fundulus parvipinnis. Bull. Scripps Instn Oceanogr. tech. Ser., Vol. 2, pp. 417–90.Google Scholar
Krogh, A., 1916. The Respiratory Exchange of Animals and Man. 173 pp. London: Longmans Green.CrossRefGoogle Scholar
Livingstone, R. J., 1968. A volumetric respirometer for long-term studies of small aquatic animals. J. mar. biol. Ass. U.K., Vol. 48, pp. 485–97.CrossRefGoogle Scholar
Motais, R., 1961. Les échanges de sodium chez un téléostéen euryhalin, Platichthys flesus L. C. r. hebd. Seanc. Acad. Sci., Paris, T. 253, pp. 724–6.Google Scholar
Motais, R., 1967. Les mécanismes d'échanges ioniques branchi-aux chez les téléostéens. Leur role 1'osmoregulation. Annls. Inst. oceanogr., Monaco, T. 45, Fasc. 1, pp. 184.Google Scholar
Motais, R., Garcia Romeu, F. & Maetz, J., 1966. Exchange diffusion effect and euryhalinity in teleosts. J. gen. Physiol., Vol. 50, pp. 391422.Google Scholar
Muir, B. S. & Hughes, G. M., 1969. Gill dimensions for three species of tunny. J. exp. Biol., Vol. 51, pp. 271–85.Google Scholar
Parry, G., 1966. Osmotic adaptation in fishes. Biol. Rev., Vol. 41, pp. 392444.Google Scholar
Potts, W. T. W. & Evans, D. H., 1966. The effects of hypophysectomy and bovine prolactin on salt fluxes in freshwater adapted Fundulus heteroclitus. Biol. Bull. mar. biol. Lab., Woods Hole, Vol. 133, pp. 411–25.Google Scholar
Qasim, S. Z., 1957. The biology of Blennius pholis L. (Teleostei). Proc. zool. Soc. Lond., Vol. 128, pp. 161208.Google Scholar
Raffy, A., 1930. Recherches sur le métabolisme respiratoire des poikilotherms aquatiques. C. r. Séanc. Soc. Biol., Paris, T. 104, pp. 287–88.Google Scholar
Raffy, A., 1949. L'euryhalinité de Blennius pholis L. C. r. Séanc. Soc. Biol., Paris, Vol. 143, pp. 1575–6.Google Scholar
Raffy, A., 1950. Réactions de Gobius paganellus L. à la délessure. C. r. Séanc. Soc. Biol., Paris, T. 144, pp. 1649–50.Google Scholar
Raffy, A., 1951. Compartment de Labrus bergylta Ascan et de Cottus bubalis Euphr. en eau de mer diluee. C. r. Séanc. Soc. Biol., Paris, T. 145, pp. 1857–9.Google Scholar
Richards, B. D. & Fromm, P. O., 1969. Patterns of blood flow through filaments and lamellae of isolated perfused rainbow trout (Salmo gairdnerii) gills. Camp. Biochem. Physiol., Vol. 29, pp. 1063–70.Google Scholar
Saunders, R. L., 1962. The irrigation of the gills in fishes. II. Efficiency of oxygen uptake in relation to respiratory flow, activity and concentration of oxygen and carbon dioxide. Can.J. Zool., Vol. 40, pp. 817–62.Google Scholar
Schlieper, C., 1936. Regulation of the relation between basal metabolism and temperature in animals with variable body temperature. Biol. Zbl., Vol. 56, pp. 8794.Google Scholar
Smith, H. W., 1930. The absorption and excretion of water and salts by marine teleosts. Am. J. Physiol., Vol. 93, pp. 480505.Google Scholar
Steen, J. B. & Kruysse, A., 1964. The respiratory function of teleostean gills. Comp. Biochem. Physiol., Vol. 12, pp. 127–42.CrossRefGoogle ScholarPubMed
Wells, N. A., 1935. Variations in the respiratory metabolism of the Pacific killifish. Fundulus parvipinnis, due to size, season and continued constant temperature. Physiol. Zool., Vol. 8, pp. 318–37.Google Scholar
Winberg, G. G., 1960. Rate of metabolism and food requirements of fishes. Fish. Res. Bd Can., Trans. Ser., Vol. 194.Google Scholar
Yagi, K. & Bern, H. A., 1963. Electrophysiologic indications of the osmoregulatory role of the teleost urohypophysis. Science, Vol. 142, pp. 491–3.CrossRefGoogle Scholar
Zeuthen, E., 1947. Body size and metabolic rate in the animal kingdom. C. r. trav. lab. Carlsberg Sec. chem., Vol. 26, pp. 1161.Google Scholar