Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T17:20:54.216Z Has data issue: false hasContentIssue false

Photographic Records of Living Oscular Tubes of Leucosolenia Variabilis I. The Choanoderm Boundary, the Choanocytes and the Pore Arrangement

Published online by Cambridge University Press:  11 May 2009

W. Clifford Jones
Affiliation:
Department of Zoology, University College of North Wales, Bangor

Extract

Some ecological data concerning the Plymouth species of Leucosolenia are given, together with a discussion of the speciation of the British Leucosolenia.

Oscular tubes of L. variabilis have been photomicrographed at intervals, usually of 1 or more days. It was found that the choanoderm boundary at the proximal end of the oscular rim may advance, remain stationary, or recede in relation to the distal edge of the tube, according to the conditions. It may also move in either direction in relation to the spicules in its vicinity, regardless of how it is moving with respect to the oscular edge. The evidence indicates that the choanoderm is mobile on the inner surface of the tube and that the level of the choanoderm boundary is influenced by the surface area available and by the rate of multiplication of the choanocytes. The former depends upon the degree of contraction or expansion of the tube and the size and number of pores.

The arrangement of the choanocytes can alter within a few minutes. The cells, however, tend to cohere; their outlines near the base are polygonal and there is a thin hyaline layer separating the surfaces of adjacent choanocytes.

The beating of the flagella is uniplanar, the plane being perpendicular to the wall. The frequency of the beat varies from one choanocyte to another, as does also the orientation of the plane of beating. The latter does not alter when a current of water is drawn across the choanoderm. Excision of an oscular tube results in water flowing out at both ends as soon as the cut has been opened.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bidder, G. P., 1895. The collar cells of Heterocoela. Quart. J. micr. Sci., Vol. 38, pp. 943.Google Scholar
Bidder, G. P., 1898. The skeleton and classification of calcareous sponges. Proc. roy. Soc., B, Vol. 64, pp. 6176.Google Scholar
Brien, P., 1937. La réorganization de l'èponge après dissociation par filtration et phénomenès d'involution chez Ephydatia fluviatilis. Arch. Biol., Paris, T. 48, pp. 185268.Google Scholar
Brøndsted, H. V., 1936. Entwicklungsphysiologische Studien über Spongilla lacustris (L.). Acta zool., Stockh., Bd. 17, pp. 75172.CrossRefGoogle Scholar
Carter, H. J., 1869. On Grayella cyathophora, a new genus and species of sponges. Ann. Mag. nat. Hist., Ser. 4, Vol. 4, pp. 189–97.CrossRefGoogle Scholar
Carter, H. J., 1874. On the spongozoa of Halisarca dujardinii. Ann. Mag. nat. Hist., Ser. 4, Vol. 13, pp. 315–16.CrossRefGoogle Scholar
Dendy, A., 1914. Observations on the gametogenesis of Grantia compressa. Quart. J. micr. Sci., Vol. 60, pp. 313–76.Google Scholar
Dendy, A., 1918. Calcareous sponges. Australian Antarctic Expedition, 1911–1914. Sci. Rep. Aust. antarct. Exped., Vol. 6, pp. 117.Google Scholar
Duboscq, O. & Tuzet, O., 1936. Les amoebocytes et les cellules germinales des éponges calcaires. Mém. Mus. Hist. nat. Belg., Sér. 2, fasc. 3, pp. 209–26.Google Scholar
Duboscq, O. & Tuzet, O., 1939. Les diverses formes des choanocytes des éponges hétérocoeles. Arch. Zool. exp. gén., T. 80, pp. 353–88.Google Scholar
Duboscq, O. & Tuzet, O., 1942. Recherches complémentaires sur l'ovogenèse, la fécondation et les premiers stades du développement des éponges calcaires. Arch. Zool. exp. gén., T. 81, pp. 395466.Google Scholar
Faure-Fremiet, M. E., 1932. Morphogénèse expérimental (reconstitution) chez Ficulina ficus L. Arch. Anat. micr. Morph. exp., T. 28, pp. 180.Google Scholar
Ganguly, B., 1960. The differentiating capacity of dissociated sponge cells. Roux. Arch. EntzvMech. Organ. Bd., 152, S. 2234.CrossRefGoogle ScholarPubMed
Gatenby, J. B. 1920. The germ-cells, fertilization, and early development of Grantia (Sycon) compressa. J. Linn. Soc. (Zool.), Vol. 34, pp. 261–97.CrossRefGoogle Scholar
Hammer, E., 1908. Neue Beiträge zur Kenntnis der Histologie und Entvvicklung von Sycon raphanus. Arch. Biontol., Berl., Bd. 2, pp. 289334.Google Scholar
Herlant-Meewis, H., 1948. Contribution à l'étude histologique des spongiaires. Ann. Soc. zool. Belg. T. 79, pp. 536.Google Scholar
Huxley, J. S., 1912. Some phenomena of regeneration in Sycon; with a note on the structure of its collar cells. Phil. Trans., B, Vol. 202, pp. 165–89.Google Scholar
Jones, W. C., 1954a. The orientation of the optic axis of spicules of Leucosolenia complicata. Quart. J. micr. Sci., Vol. 95, pp. 3348.Google Scholar
Jones, W. C., 1954b. Spicule form in Leucosolenia complicata. Quart. J. micr. Sci., Vol. 95, pp. 191203.Google Scholar
Jones, W. C., 1955. Crystalline properties of spicules of Leucosolenia complicata. Quart. J. micr. Sci., Vol. 96, pp. 129–49.Google Scholar
Jones, W. C., 1956. Colloidal properties of the mesogloea in species of Leucosolenia. Quart. J. micr. Sci., Vol. 97, pp. 269–85.Google Scholar
Jones, W. C., 1957. The contractility and healing behaviour of pieces of Leucosolenia complicata. Quart. J. micr. Sci., Vol. 98, pp. 203–17.Google Scholar
Jones, W. C., 1958. The effect of reversing the internal water-current on the spicule orientation in Leucosolenia variabilis and L. complicata. Quart. J. micr. Sci., Vol. 99, pp. 263–78.Google Scholar
Jones, W. C., 1959. Spicule growth rates in Leucosolenia variabilis. Quart. J. micr. Sci., Vol. 100, pp. 557–70.Google Scholar
Jones, W. C., 1961a. Properties of the wall of Leucosolenia variabilis. I. The skeletal layer. Quart. J. micr. Sci., Vol. 102, pp. 531–42.Google Scholar
Jones, W. C., 1961b. Properties of the wall of Leucosolenia variabilis. II. The choanoderm and the porocyte epithelium. Quart. J. micr. Set., Vol. 102, pp. 543–50.Google Scholar
Jones, W. C., 1962. Is there a nervous system in sponges? Biol. Rev., Vol. 37, pp. 150.CrossRefGoogle Scholar
Kilian, E. F., 1952. Wasserströmung und Nahrungsaufnahme beim Süswasserschwamm Ephydatia fluviatilis. Z. vergl. Physiol., Bd. 34, S. 407447.CrossRefGoogle Scholar
Korotkova, G. P., 1961. Pereиepanсϰа и Kлetoчoe ϰзmйoиhoe y йзBectkoboй ryòkϰ Leucosolenia complicata Mont. Vyestn. Leningr. Univ., No. 21. pp. 3950.Google Scholar
Korotkova, G. P., 1962. Behaviour of the cellular elements in the calcareous sponge Leucosolenia complicata Mont, during regeneration. Acta biol. Acad. Sci. hung., Budapest, Vol. 13, pp. 130.Google Scholar
Korotkova, G. P. & Gelihovskaia, M. A., 1963. Recherches expèrimentales sur le phènoméne de polarité chez les èponges calcaires du type ascon. Cah. Biol. mar., T. 4, pp. 4760.Google Scholar
Laubenfels, M. W. De, 1936. A discussion of the sponge fauna of the Dry Tortugas in particular and the West Indies in general, with material for a revision of the families and orders of the Porifera. Pap. Tortugas Lab., Vol. 30, pp. 1212.Google Scholar
Lendenfeld, R. Von, 1892 a. Die Spongien der Adria. I. Die Kalkschwamme. Z. wiss. Zool., Bd. 53, S. 185321.Google Scholar
Lendenfeld, R. Von, 1892 b. Über Minchin's Angaben betreffs der Histologie der Kalkschwämme. Zool. Anz., J. 15, No. 397, S. 277–9.Google Scholar
Lévi, C. & Porte, A., 1962. Étude au microscope électronique de l'éponge Oscarella lobularis Schmidt et de sa larve amphiblastula. Cah. Biol. mar., T. 3, pp. 307–15.Google Scholar
Maximov, A. A. & Bloom, W., 1958. A Textbook of Histology. 628 pp. Philadelphia: W. B. Saunders and Co.Google Scholar
Minchin, E. A., 1892a. The oscula and anatomy of Leucosolenia clathrus O.S. Quart. J. micr. Sci., Vol. 33, pp. 477–94.Google Scholar
Minchin, E. A., 1892b. Some points on the histology of Leucosolenia (Ascetta) clathrus O.S. Zool. Anz., J. 15, No. 391, pp. 180–4.Google Scholar
Minchin, E. A., 1898. Materials for a monograph of the ascons. I. On the origin and growth of the triradiate and quadriradiate spicules in the family Clathrinidae. Quart. J. micr. Sci., Vol. 40, pp. 469588.Google Scholar
Minchin, E. A., 1904. The characters and synonymy of the British species of sponges of the genus Leucosolenia. Proc. zool. Soc. Lond., Vol. 2, pp. 349–96.CrossRefGoogle Scholar
Minchin, E. A., 1908. Materials for a monograph of the ascons. II. The formation of spicules in the genus Leucosolenia, with some notes on the histology of the sponges. Quart. J. micr. Sci., Vol. 52, pp. 301–35.Google Scholar
Minchin, E.A. & Reid, D. J., 1908. Observations on the minute structure of the spicules of calcareous sponges. Proc. zool. Soc. Lond., pp. 661–76.CrossRefGoogle Scholar
Parker, G. H., 1910. The reactions of sponges, with a consideration of the origin of the nervous system. J. exp. Zool., Vol. 8, pp. 141.CrossRefGoogle Scholar
Pourbaix, N., 1933. Recherches sur la nutrition des spongiaires. Notas. Inst esp. Oceanogr., Ser. 2, No. 69, pp. 142.Google Scholar
Prenant, M., 1925. Observations sur les porocytes de Clathrina coriacea Mont. Trav. Sta. zool. Wimereux, T. 9, pp. 198204.Google Scholar
Rasmont, R., 1959. L'ultrastructure des choanocytes d'éponges. Ann. Sci. nat. (Zool.), Ser. 12, T. 1, pp. 253–62.Google Scholar
Sarà, M., 1955a. Sulle cellule nutrici nell'ovogenesi delle calcispongie omoceli. Boll. Zool., Vol. 22, fasc. 2, pp. 323–7.CrossRefGoogle Scholar
Sarà, M., 1955b. La nutrizione dell'ovocita in calcispongie omoceli. Annu. Ist. Zool. Univ. Napoli, Vol. 7, N. 2, pp. 130.Google Scholar
Sarà, M., 1956a. Sulla presenza e significato di un nuovo tipo di oxee in Leucosolenia botryoides (Ell. et Sol.) (Calcispongie). Annu. Ist. Zool. Univ. Napoli, Vol. 8, N. 5 pp. 16.Google Scholar
Sarà, M., 1956b. Aspetti genetici ed ecologici dell'ibridazione naturale fra differenti specie di Leucosolenia (Calcispongie) a Roscoff. Boll. Zool., Vol. 23, fasc. 2, pp. 113.CrossRefGoogle Scholar
Sivaramakrishnan, V. R., 1951. Studies on early development and regeneration in some Indian marine sponges. Proc. Indian Acad. Sci., B, Vol. 34, pp. 273310.CrossRefGoogle Scholar
Spiegel, M., 1955. The reaggregation of dissociated sponge cells. Ann. N.Y. Acad. Sci., Vol. 60, Art. 7, pp. 1056–78.CrossRefGoogle ScholarPubMed
Topsent, E., 1936. Étude sur des Leucosolenia. Bull. Inst. océanogr. Monaco, No. 711, pp. 147.Google Scholar
Urban, F., 1906. Kalifornische Kalkschwämme. Arch. Naturgesch., J. 72, Bd. 1, S. 3376.Google Scholar
Volkonsky, M., 1929. Les grains des porocytes et des cellules sphéruleuses de l'ascon Clathrina coriacea (Mont.). Bull. Soc. zool. Fr., T. 54, pp. 380–5.Google Scholar
Volkonsky, M., 1930. Éponges calcaires. La cinétide des cellules de Clathrina coriacea Mont. Bull. Soc. zool. Fr., T. 55, pp. 183–9.Google Scholar
Vosmaer, G. C. J. & Pekelharing, C. A., 1898. Observations on sponges. Verh. Akad. Wet., Amst., Sect. 2, D. 6, No. 3, 51 pp.Google Scholar
Wilson, H. V., 1910. Development of sponges from dissociated tissue cells. Bull. U.S. Bur. Fish., Vol. 30, pp. 130.Google Scholar
Wilson, H. V. & Penney, J. T., 1930. The regeneration of sponges (Microciona) from dissociated cells. J. exp. Zool., Vol. 56, pp. 73148.CrossRefGoogle Scholar