Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T12:52:26.215Z Has data issue: false hasContentIssue false

The planktonic ciliate community and its relationship with the environmental conditions and water quality in two bays of the Beagle Channel, Argentina

Published online by Cambridge University Press:  31 May 2013

M.S. Barría de Cao*
Affiliation:
IADO (CONICET–UNS) Florida 4750, B8000FWB-Bahía Blanca, Argentina DBByF–UNS, San Juan 670-Bahía Blanca, Argentina
M.C. López Abbate
Affiliation:
IADO (CONICET–UNS) Florida 4750, B8000FWB-Bahía Blanca, Argentina
R.E. Pettigrosso
Affiliation:
DBByF–UNS, San Juan 670-Bahía Blanca, Argentina
M.S. Hoffmeyer
Affiliation:
IADO (CONICET–UNS) Florida 4750, B8000FWB-Bahía Blanca, Argentina Universidad Tecnológica Nacional, Facultad Regional Bahía Blanca, 11 de abril 461, B8001LMI-Bahía Blanca, Argentina
*
Correspondence should be addressed to: M.S. Barría de Cao, IADO (CONICET–UNS) Florida 4750, B8000FWB-Bahía Blanca, Argentina email: sbarria@criba.edu.ar

Abstract

The relationship between the ciliate community and the environmental variables in Ushuaia and Golondrina bays (54°79′S 68°22′W and 54°85′S 68°36′W, respectively) in the Beagle Channel, Argentina was investigated. The study was performed in three zones within the bays, previously delimited on the basis of their water quality. The most perturbed sites were located inshore. In order to analyse the contribution of each species to the similarity or dissimilarity between zones, similarity percentages analysis was undertaken using the Bray–Curtis similarity index. The variations in species composition and dominance in the selected zones were examined by the abundance–biomass comparison plot. We also studied the relationship between environmental and ciliates variability. The ciliate community comprised a total of 43 species belonging to 15 genera. Ciliate abundance and biomass varied temporally and spatially. A more diverse community dominated by small and opportunistic species tolerant to environmental changes was found in the most perturbed zone, while in the less stressed zone the community comprised bigger species, probably adapted to more stable environmental conditions. A community comprising species from both zones was found in a transitional area. We conclude that the structure of the community varied closely with environmental conditions.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Agatha, S. (2011) Global diversity of Aloricate Oligotrichea (Protista, Ciliophora, Spirotricha) in marine and brackish sea water. PLOS ONE 6, e22466.CrossRefGoogle ScholarPubMed
Aguirre, G.E., Capitani, F.L., Lovrich, G.A and Esnal, G.B. (2012) Seasonal variability of metazooplankton in coastal sub-Antarctic waters (Beagle Channel). Marine Biology Research 8, 341353.CrossRefGoogle Scholar
Almandoz, G.O., Hernando, M.P., Ferreyra, G.A., Schloss, I.R. and Ferrario, M.E. (2011) Seasonal phytoplankton dynamics in extreme southern South America (Beagle Channel, Argentina). Journal of Sea Research 66, 4757.CrossRefGoogle Scholar
Amín, O. and Comoglio, L. (2007) Estudios ambientales en ecosistemas costeros perturbados (Bahía Ushuaia). Proyecto GEF Prevención de la contaminación costera y Gestión de la diversidad Biológica Marina (Informe Técnico Final Subproyecto: B-CB-05).Google Scholar
Amín, O., Ferrer, L. and Marcovecchio, J. (1996). Heavy metal concentrations in littoral sediments from the Beagle Channel, Tierra del Fuego, Argentina. Environmental Monitoring and Assessment 41, 219231.CrossRefGoogle Scholar
Archer, S.D., Verity, P.G. and Stefels, J. (2000) Impact of microzooplancton on the progression and fate of the spring bloom in fjords of northern Norway. Aquatic Microbial Ecology 22, 2741.CrossRefGoogle Scholar
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257263.CrossRefGoogle Scholar
Balech, E. (1948) Tintinnoinea de Atlántida (R.O. del Uruguay) (Protozoa Ciliata Oligotr.). Comunicaciones del Museo Argentino de Ciencias Naturales. Serie Ciencias Zoológicas 7, 123.Google Scholar
Balestrini, C., Manzella, G. and Lovrich, G.A. (1998) Simulación de corrientes en el canal Beagle y Bahía Ushuaia mediante un modelo bidimensional. Servicio de Hidrografía Naval, Departamento de Oceanografía (Informe técnico), no. 98.Google Scholar
Barría de Cao, M.S., Beigt, D. and Piccolo, M.C. (2005) Temporal variability of diversity and biomass of tintinnids (Ciliophora) in a southwestern Atlantic temperate estuary. Journal of Plankton Research 27, 11031111.CrossRefGoogle Scholar
Biancalana, F. (2008) Dinámica del mesozooplancton y su regulación ambiental en las bahías Ushuaia y Golondrina (Canal Beagle). PhD thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina.Google Scholar
Biancalana, F., Barría de Cao, M.S. and Hoffmeyer, M.S. (2007) Micro and mesozooplankton composition during winter in Ushuaia and Golondrina Bays (Beagle Channel, Argentina). Brazilian Journal of Oceanography 55, 8395.CrossRefGoogle Scholar
Biancalana, F., Diodato, S. and Hoffmeyer, M.S. (2012) Seasonal and spatial variation of mesozooplankton biomass in Ushuaia and Golondrina Bays (Beagle Channel, Argentina). Brazilian Journal of Oceanography 60, 99106.CrossRefGoogle Scholar
Burkill, P.H., Edwards, E.S. and Sleigh, M.A. (1995) Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Research II 42, 12771290.CrossRefGoogle Scholar
Casini, M., Hjelm, J., Molinero, J.C., Lövgren, J., Cardinale, M., Bartolino, V., Belgrano, A. and Kornilovs, G. (2009) Trophic cascades promote threshold-like shifts in pelagic marine ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 197202.CrossRefGoogle ScholarPubMed
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Cambridge: Natural Environment Research Council.Google Scholar
Commendatore, M.G. and Esteves, J.L. (2001) Hidrocarburos alifáticos en la zona costera de la Provincia de Tierra del Fuego (Argentina). Datos preliminares. In Proceedings of the IX Congreso Latinoamericano de Ciencias del Mar, San Andrés, Colombia, September 16–20, 2001. [Abstract.]Google Scholar
Dolan, J. (1991) Guilds of ciliate microzooplankton in the Chesapeake Bay. Estuarine, Coastal and Shelf Science 33, 137152.CrossRefGoogle Scholar
Esteves, J.L., Solís, M.E., Rodríguez, V. and Willers, V. (2003) Bahía Ushuaia y Golondrina, calidad de aguas costeras y cursos de aguas que ingresan a las mismas (Enero 2001). In Proceedings of the V Jornadas de Ciencias del Mar and XIII Coloquio de Oceanografía, Mar del Plata, Argentina, December 8–12, 2003. [Abstract.]Google Scholar
Fenchel, T. (1980) Suspension feeding in ciliated Protozoa: feeding rates and their ecological significance. Microbial Ecology 6, 1325.CrossRefGoogle ScholarPubMed
Fernández- Severini, M.D. and Hoffmeyer, M.S. (2005) Mesozooplankton assemblages in two different bays in the Beagle Channel (Argentina) during January, 2001. Scientia Marina 69, 2737.CrossRefGoogle Scholar
Froneman, P.W. and Perissinotto, R. (1996) Microzooplankton grazing and protozooplankton community structure in the South Atlantic and in the Atlantic sector of the Southern Ocean. Deep-Sea Research I 43, 703721.CrossRefGoogle Scholar
Garrison, D.L., Gowing, M.M., Hughes, M.P., Campbell, l., Caron, D.A., Dennett, M.R., Shalapyononk, A., Olson, R.J., Landry, M.R., Brown, S.L., Liu, H.B., Azam, F., Steward, G.F., Ducklow, H.W. and Smith, D. (2000) Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep-Sea Research II 47, 13871422.CrossRefGoogle Scholar
Garrison, D.L. (1991) An overview of the abundance and role of protozooplankton in Antarctic waters. Journal of Marine Systems 2, 17331.CrossRefGoogle Scholar
Gaul, W. and Antia, A.N. (2001) Taxon-specific growth and selective microzooplankton grazing of phytoplankton in the Northeast Atlantic. Journal of Marine Systems 30, 241261.CrossRefGoogle Scholar
Gil, M.N., Torres, A.I., Amin, O. and Esteves, J.L. (2010) Assessment of recent sediment influence in an urban polluted subantartic coastal ecosystem. Beagle Channel (Southern Argentina). Marine Pollution Bulletin, 62, 201–207.Google Scholar
Grasshoff, K., Ehrhardt, M. and Kremling, K. (1983) Methods of seawater analysis. 8th editionNew York, Weinheim: Chemie.Google Scholar
Hasle, G. (1978) Concentrating phytoplankton settling. The inverted–microscope method. In Sournia, A. (ed.) Phytoplankton manual. Monographs on oceanographic methodology, Volume 6. Paris: UNESCO, pp. 8896.Google Scholar
Isla, F., Bujalesky, A. and Coronato, A. (1999) Procesos estuarinos en el canal Beagle, Tierra del Fuego. Revista de la Asociación Geológica Argentina 54, 307318.Google Scholar
Ito, H. and Taniguchi, A. (2001) Standing crops of planktonic ciliates and copepod Nauplii in the subarctic North Pacific and the Bering Sea in summer. Journal of Oceanography 57, 333339.CrossRefGoogle Scholar
Kofoid, C. and Campbell, A. (1929) A conspectus of the marine and freshwater ciliata belonging to the suborder Tintinnoinea, with descriptions of the new species principally from the Agassiz expedition to the Eastern Tropical Pacific, 1904–1905. Univiversity of California Publications in Zoology 34, 1403.Google Scholar
Leakey, R.J.G., Burkill, P.H. and Sleigh, M.A. (1992) Planktonic ciliates in Southampton Water: abundance, biomass, productions and role in pelagic carbon flow. Marine Biology 114, 6783.CrossRefGoogle Scholar
Leakey, R.J.G., Fenton, N. and Clarke, A. (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antartica. Journal of Plankton Research 16, 841856.CrossRefGoogle Scholar
Maeda, M. and Carey, P. (1985) An illustrated guide to the species of the family Strombidiidae (Oligotrichida, Ciliophora), free swimming Protozoa common in the aquatic environment. Bulletin of the Oceanography Research Institute, University of Tokyo 19, 168.Google Scholar
Montagnes, D.J.R., Lynn, D.H., Roff, J.C. and Taylor, W.D. (1988) The annual cycle of the heterotrophic planktonic ciliates in the waters surrounding the isles of Shoals, Gulf of Maine: an assessment of their trophic role. Marine Biology 99, 2130.CrossRefGoogle Scholar
Nielsen, T.G. and Andersen, C.M. (2002) Plankton community structure and production along a freshwater-influenced Norwegian fjord system. Marine Biology 141, 707724.Google Scholar
Pettigrosso, R.E. (2003) Planktonic ciliates Choreotrichida and Strombidiida from the inner zone of the Bahía Blanca Estuary, Argentina. Iheringia Serie Zoologia, 93, 117126.CrossRefGoogle Scholar
Pettigrosso, R.E. and Popovich, C. (2009) Phytoplankton–aloricate ciliate community in the Bahía Blanca Estuary (Argentina): Seasonal patterns and trophic groups. Brazilian Journal of Oceanography 57, 215227.CrossRefGoogle Scholar
Pierce, R.W. and Turner, J.T. (1992) Ecology of planktonic ciliates in marine food webs. Reviews in Aquatic Sciences 6, 139181.Google Scholar
Putland, J.N. (2000) Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter. Journal of Plankton Research 22, 253277.CrossRefGoogle Scholar
Putt, M. and Stoecker, D.K. (1989) An experimentally determined carbon: volume ratio for ‘oligotrichous’ ciliates from estuarine and coastal waters. Limnology and Oceanography 34 10971103.CrossRefGoogle Scholar
Sabatini, M.E., Giménez, J. and Rocco, V. (2001) Características del zooplancton del área costera de la plataforma patagónica austral (Argentina). Boletín del Instituto Español de Oceanografía 17, 245254.Google Scholar
Sabatini, M.E., Reta, R. and Matano, R. (2004) Circulation and zooplankton biomass distribution over the southern Patagonian shelf during late summer. Continental Shelf Research 24, 13591373.CrossRefGoogle Scholar
Sokal, R.R. and Rohlf, F.J. (1981) Biometry. 2nd editionSan Fransico, CA: W.H. Freeman.Google Scholar
Strickland, J.D. and Parsons, T.R. (1968) A practical handbook of seawater analysis. Ottawa: Fisheries Research Board of Canada, pp. 167.Google Scholar
Sorokin, Y.I., Sorokin, P.Y. and Mamaeva, T.I. (1996) Density and distribution of bacterioplankton and planktonic ciliates in the Bering Sea and North Pacific. Journal of Plankton Research 18, 116.CrossRefGoogle Scholar
Verity, P.G. and Langdon, C. (1984) Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. Journal of Plankton Research, 6, 859868.CrossRefGoogle Scholar
Warwick, R.M. (1986) A new method for detecting pollution effects on marine macrobenthic communities. Marine Biology 92, 557562.CrossRefGoogle Scholar