Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-11T05:16:58.220Z Has data issue: false hasContentIssue false

The population dynamics of Ophidiaster ophidianus (Echinodermata: Asteroidea) in the Azores, at the north-western periphery of its distribution

Published online by Cambridge University Press:  09 August 2012

J. Micael*
Affiliation:
CIBIO-Azores, Research Center in Biodiversity and Genetic Resources, Department of Biology, University of the Azores, Ponta Delgada Campus, PT-9501-801 Ponta Delgada, São Miguel, Azores
M.J. Alves
Affiliation:
Centro de Biologia Ambiental and Museu Nacional de História Natural, Universidade de Lisboa, Rua da Escola Politécnica, 1250-102 Lisboa, Portugal
A.C. Costa
Affiliation:
CIBIO-Azores, Research Center in Biodiversity and Genetic Resources, Department of Biology, University of the Azores, Ponta Delgada Campus, PT-9501-801 Ponta Delgada, São Miguel, Azores
*
Correspondence should be addressed to: J. Micael, CIBIO-Azores, Research Center in Biodiversity and Genetic Resources, Department of Biology, University of the Azores, Ponta Delgada Campus, PT-9501-801 Ponta Delgada, São Miguel, Azores email: jfmicael@yahoo.com

Abstract

The warm water Ophidiaster ophidianus has a protected status in the Mediterranean Sea and also occurs in the shallow subtidal of the Azorean Archipelago. From April 2007 to August 2009, the population structure and seasonal abundance of O. ophidianus was studied at different depths within a marine conservation area offshore from São Miguel (SAC: PTMIG0020, Natura 2000). Ophidiaster ophidianus showed a marked seasonal trend in abundance, with higher numbers being recorded from 5 m depth during spring and autumn, and higher numbers at 10 m depth in summer and winter. Densities ranged from 9 to 16 individuals per 100 m2 over the sampling period. The size–frequency distribution of O. ophidianus was uni-modal for each sampling month. Small individuals dominated at 5 m depth, intermediate-sized individuals at 10 m and larger individuals were more frequent at 15 m. The present study establishes population parameters for O. ophidianus and provides the necessary information for management purposes at the north-western periphery of its range in the Azores.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ambrose, W.G. Jr (1993) Effects of predation and disturbance by ophiuroids on soft-bottom community structure on Oslofjord: results of a mesocosm study. Marine Ecology Progress Series 97, 225236.CrossRefGoogle Scholar
Andrewartha, H.G. and Birch, L.C. (1954) The distribution and abundance of animals. Chicago, IL: The University of Chicago Press.Google Scholar
Barker, M.F. (1979) Breeding and recruitment in a population of the New Zealand starfish Stichaster australis (Verrill). Journal of Experimental Marine Biology and Ecology 41, 195211.CrossRefGoogle Scholar
Barker, M.F. and Nichols, D. (1983) Reproduction, recruitment and juvenile ecology of the starfish Asterias rubens and Marthasterias glacialis. Journal of the Marine Biological Association of the United Kingdom 63, 745765.CrossRefGoogle Scholar
Benedetti-Cecchi, L., Bulleri, F. and Cinelli, F. (1998) Density dependent foraging of sea urchins in shallow subtidal reefs on the west coast of Italy (western Mediterranean). Marine Ecology Progress Series 163, 203211.CrossRefGoogle Scholar
Birkeland, C. (1982) Terrestrial runoff as a cause of outbreaks of Acanthaster planci (Echinodermata: Asteroidea). Marine Biology 69, 175185.CrossRefGoogle Scholar
Birkeland, C., Chla, F.S. and Strathmann, R.R. (1971) Development, substrate selection, delay of metamorphosis and growth in the sea-star Mediaster aequalis. Biological Bulletin. Marine Biological Laboratory, Woods Hole 141, 99108.CrossRefGoogle Scholar
Brown, J.H. (1995) Macroecology. Chicago, IL: The University of Chicago Press.Google Scholar
Caso, M.E. (1972) El género Acanthaster. Su biología, ecología y su efecto destructor de los arrecifes. Revista de la Sociedad Mexicana de Historia Natural 23, 5183.Google Scholar
Caughley, G.C. and Gunn, A. (1996) Conservation biology in theory and practice. Cambridge, MA and Oxford, UK: Blackwell Science.Google Scholar
Channell, R. and Lomolino, M.V. (2000) Dynamic biogeography and conservation of endangered species. Nature 403, 8486.CrossRefGoogle ScholarPubMed
Clark, A.M. (1968) Starfishes and their relations. London: British Museum (Natural History).Google Scholar
Clark, A.M. and Downey, M.E. (1992) Starfishes of the Atlantic. London: Chapman & Hall.Google Scholar
Clark, H.L. (1904) The echinoderms of the Woods Hole Region. Fish Bulletin, US Fish Wildlife Service 22, 545576.Google Scholar
Coe, W.R. (1912) Echinoderms of Connecticut. Bulletin 19. Hartford, CT: Connecticut Geological and Natural History Survey.Google Scholar
Dance, C. and Savy, S. (1987) Predation on Paracentrotus lividus by Marthasterias glacialis: an in-situ experiment at Port-Cross (France, Mediterranean). Posidonia Newsletter 1, 3541.Google Scholar
Day, R.W. and Osman, R.W. (1981) Predation by Patiria miniata (Asteroidea) on bryozoans: prey diversity may depend on the mechanism of succession. Oecologia 51, 300309.CrossRefGoogle ScholarPubMed
Ellis, J.R. and Rogers, S.I. (2000) The distribution, relative abundance and diversity of echinoderms in the eastern English Channel and Irish Sea. Journal of the Marine Biological Association of the United Kingdom 80, 127138.CrossRefGoogle Scholar
Endean, R. (1973) Population explosions of Acanthaster planci and associated destruction of hermatypic corals in the Indo-West Paclfic region. In Jones, O.A. and Endean, R. (eds) Biology and geology of coral reefs. Volume 11. New York: Academic Press, pp. 389438.CrossRefGoogle Scholar
Entrambasaguas, L., Pérez-Ruzafa, Á., García-Charton, J.A., Stobart, B. and Bacallado, J.J. (2008) Abundance, spatial distribution and habitat relationships of echinoderms in the Cabo Verde Archipelago (eastern Atlantic). Marine and Freshwater Research 59, 477488.CrossRefGoogle Scholar
Frade, P., Ferraz, R.R., Santos, V., Vizinho, S., Cardigos, F., Guerreiro, V., Tempera, F. and Santos, R.S. (2004) Caracterização Ecológica e Sócio-económica do Sítio de Importância Comunitária Caloura, Ponta da Galera (PTMIGO0020) e Medidas de Gestão Propostas. Arquivos do DOP: Série Estudos n.º 11/2004: iv + 81 pp.Google Scholar
Franz, D.R., Worley, E.K. and Merril, A.S. (1981) Distribution patterns of common seastars of the middle Atlantic continental shelf of the North West Atlantic, gulf of Main to Cape Hatteras. Biological Bulletin. Marine Biological Laboratory, Woods Hole 160, 394418.CrossRefGoogle Scholar
Freeman, S.M., Richardson, C.A. and Seed, R. (2001) Seasonal abundance, spatial distribution, spawning and growth of Astropecten irregularis (Echinodermata: Asteroidea). Estuarine, Coastal and Shelf Science 53, 3949.CrossRefGoogle Scholar
Gage, J.D. (1986) The benthic fauna of the Rockall Trough: regional distribution and bathymetric zonation. Proceedings of the Royal Society of Edinburgh 88, 159174.Google Scholar
Gaston, K.J. (1994) Rarity. London: Chapman & Hall.CrossRefGoogle Scholar
Guillou, M. (1996) Biotic and abiotic interactions controlling starfish outbreaks in the Bay of Douarnenez, Brittany, France. Oecologia 19, 415420.Google Scholar
Guzmán, H.M. and Guevara, C.A. (2002) Annual reproductive cycle, spatial distribution, abundance, and size structure of Oreaster reticulatus (Echinodermata: Asteroidea) in Bocas del Toro, Panama. Marine Biology 141, 10771084.Google Scholar
Himmelman, J.H. and Dutil, C. (1991) Distribution, population size-structure and feeding of subtidal seastars in the northern Gulf of St Lawrence. Marine Ecology Progress Series 76, 6172.CrossRefGoogle Scholar
Houk, P. and Raubani, J. (2010) Acanthaster planci outbreaks in Vanuatu coincide with ocean productivity, furthering trends throughout the Pacific Ocean. Journal of Oceanography 66, 435438.CrossRefGoogle Scholar
Howell, K.L., Billett, D.S.M. and Tyler, P.A. (2002) Depth-related distribution and abundance of seastars (Echinodermata: Asteroidea) in the Porcupine Seabight and Porcupine Abyssal Plain, N.E. Atlantic. Deep-Sea Research 49, 19011920.CrossRefGoogle Scholar
Jost, P. and Rein, K. (1985) Migration from refuges: a stabilizing factor for a sea-star community. In Keegan, B.F. and O'Connor, R.D.S. (eds) Proceedings of the International Echinoderm Conference, Galway, 24–29 September 1984. Echinodermata. Rotterdam: A.A. Balkema, pp. 523528.Google Scholar
Kelleher, G. and Kenchington, R. (1992) Guidelines for establishing Marine Protected Areas. Geneva: IUCN.Google Scholar
Koehler, R. (1924) Les Echinodermes des Mers d'Europe. Tome Premier. Paris: Librairie Octave Doin et Gaston Doin.Google Scholar
Krebs, C.J. (1978) Ecology: the experimental analysis of distribution and abundance. 2nd edition. New York: Harper & Row.Google Scholar
Lamarck, J.B.P.A. de (1816) Histoire naturelle des animaux sans vertebres. I. Stellerides. Paris: Verdière.Google Scholar
Linnane, A., Ball, B., Munday, B., Browne, R. and Mercer, J. (2003) Faunal description of an Irish cobble site using airlift suction sampling. Proceedings of the Royal Irish Academy 103(B), 4148.CrossRefGoogle Scholar
Lomolino, M.V. and Channell, R. (1995) Splendid isolation: patterns of range collapse in endangered mammals. Journal of Mammalogy 76, 335347.CrossRefGoogle Scholar
Marques, V.M. (1983) Peuplements benthiques de Açores; 1—echinoderms. Arquivo do Museu Bocage AII (I), 17.Google Scholar
Micael, J., Alves, M.J., Jones, M.B. and Costa, A.C. (2010) Quantitative sampling of sub-tidal echinoderms in Azores. Vie et Milieu, Life and Environment 60, 327333.Google Scholar
Micael, J., Rodrigues, A.S., Barreto, M.C., Alves, M.J., Jones, M.B. and Costa, A.C. (2011) Allocation of nutrients during the reproductive cycle of Ophidiaster ophidianus (Echinodermata: Asteroidea). Invertebrate Reproduction and Development 55, 205216.CrossRefGoogle Scholar
Paine, R.T. (1966) Food web complexity and species diversity. American Naturalist 100, 675676.CrossRefGoogle Scholar
Paine, R.T. (1969) A note on trophic complexity and community stability. American Naturalist 103, 9193.CrossRefGoogle Scholar
Pratchett, M.S. (2005) Dynamics of an outbreak population of Acanthaster planci at Lizard Island, northern Great Barrier Reef (1995–1999). Coral Reefs 24, 453462.CrossRefGoogle Scholar
Rapoport, E.H. (1982) Aerography: geographical strategies of species. Oxford: Pergamon Press.Google Scholar
Roberts, C., Branch, G., Bustamante, R., Castilla, J., Dugan, J., Halpern, B., Leslie, H., Lafferty, K., Lubchenco, J., McArdle, D., Possingham, H., Ruckleshaus, M., and Warner, R. (2003) Application of ecological criteria in selecting marine reserves and developing reserve networks. Journal of Applied Ecology 13, 215228.CrossRefGoogle Scholar
Rumrill, S.S. (1989) Population size-structure, juvenile growth and breeding periodicity of the sea star Asterina miniata in Barkley Sound, British Columbia. Marine Ecology Progress Series 56, 3747.CrossRefGoogle Scholar
Scheibling, R.E. (1980) Abundance, spatial distribution and size structure of populations of Oreaster reticulatus. Marine Biology 57, 107119.CrossRefGoogle Scholar
Simberloff, D. (1998) Flagships, umbrellas, and keystones: is single-species management passé in the landscape era? Biological Conservation 83, 247257.CrossRefGoogle Scholar
Sinclair, A.R.E., Mduma, S.A.R., Grant, J., Hopcraft, C., Fryxell, J.M., Hilborn, R. and Thirgood, S. (2007) Long-term ecosystem dynamics in the Serengeti: lessons for conservation. Conservation Biology 21, 580590.CrossRefGoogle ScholarPubMed
Sloan, N.A. (1980) Aspects of the feeding biology of asteroids. Oceanography and Marine Biology: an Annual Review 18, 57124.Google Scholar
StatSoft Inc (2004) STATISTICA (data analysis software system), version 7. www.statsoft.com.Google Scholar
Tortonese, E. (1965) Echinodermata. Fauna d'Italia. Volume 6. Bologna: Calderini.Google Scholar
Tuya, F., Boyra, A., Sánchez-Jérez, P., Barbera, C. and Haroun, R.J. (2004) Relationships between rocky-reef fish assemblages, the sea urchin Diadema antillarum and macroalgae throughout the Canarian Archipelago. Marine Ecology Progress Series 278, 157169.CrossRefGoogle Scholar
Verling, E., Crook, A.C., Barnes, D. and Harrison, S.C. (2003) Structural dynamics of a sea-star (Marthasterias glacialis) population. Journal of the Marine Biological Association of the United Kingdom 83, 583592.CrossRefGoogle Scholar
Yamaguchi, M. (1977) Population structure, spawning, and growth of the coral reef asteroid Linckia laevigata (Linnaeus). Pacific Science 31, 1330.Google Scholar