Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T10:56:10.209Z Has data issue: false hasContentIssue false

The Relation of the Plankton to some Chemical and Physical Factors in the Clyde Sea Area

Published online by Cambridge University Press:  11 May 2009

A. P. Orr
Affiliation:
From the Marine Station, Millport

Extract

1. Simultaneous observations are recorded of some biological, physical, and chemical changes in the Clyde Sea Area in 1924, 1925, and 1926.

2. A close relation between diatom increases and changes in pH value, dissolved oxygen saturation and dissolved phosphate has been found.

3. It appears that the more numerous diatom increases in Loch Strivan as compared with the open sea are due to the more frequent mixing.

4. Confirmation of the fact that diatom increases begin at the surface and gradually spread into deeper water has been obtained.

5. The occurrence of Peridinians is apparently related to high temperature and low salinity.

6. The amount of sunshine in the early part of the year does not exert any apparent influence on the date of the spring diatom increase in the Clyde Sea Area.

7. The regeneration of phosphate in the deep water of Loch Strivan has been described.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1927

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Atkins, W. R. G.. 1922. The hydrogen-ion concentration of sea-water in its biological relations, Part I. Journal Marine Biological Association, N.S., Vol. 12.Google Scholar
2.Atkins, W. R. G. 1923. The silica content of some natural waters and of culture media. Journal Marine Biological Association., Vol. 13.Google Scholar
3.Atkins, W. R. G. 1923. The hydrogen-ion concentration of sea-water in its relation to photosynthetic changes, Part II. Journal Marine Biological Association., Vol. 13.Google Scholar
4.Atkins, W. R. G. 1923. The phosphate content of fresh and salt waters in its relationship to the growth of the algal plankton. Journal Marine Biological Association., Vol. 13.Google Scholar
5.Atkins, W. R. G. 1925. Seasonal changes in the silica content of natural waters in relation to the phytoplankton. Journal Marine Biological Association., Vol. 13.Google Scholar
6.Atkins, W. R. G. 1926. A quantitative consideration of some factors concerned in plant growth in water. Part 2. Journal du Conseil. Vol. I, No. 3.Google Scholar
7.Fox, C. J. J. 1907. The dissolved gases of sea-water. Publications de Circonstance. No. 41.Google Scholar
8.Gran, H. H. 1912. The plankton production of North European waters in the spring of 1912. Bulletin Planktonique.Google Scholar
9.Gran, H. H., and Torbjörn, Gaarder. 1918. Uber den Einfluss der atmosparischen Veränderung Nordeuropas auf die hydro-graphischen Verhaltnisse des Kristianiafjords bei Drobak in Marz, 1916. Publications de Circonstance. No. 71.Google Scholar
10.Harvey, H. W. 1926. Nitrate in the sea. Journal Marine Biological Association. Vol. 14.Google Scholar
11.HerdmanW. A., A. S. Scott W. A., A. S. Scott, and Dakin, W. J.. 1909. Intensive study of the marine plankton round the Isle of Man. Transactions Liverpool Biological Society. Vol. 18.Google Scholar
12.Herdman, W. A. 1918. Distribution of certain diatoms and copepods throughout the year. Journal Linnean Society, Zoology, Vol. 34.Google Scholar
13.Huntsman, A. G. 1923. The influence of tidal oscillations on vertical circulation in estuaries. Transactions Roy. Soc. Canada, 3rd Series, Vol. 17.Google Scholar
14.Karsten, G. 1905. Die Phytoplankton des Antarktischen Meeres nach dem Material der deutschen Tiefsee Expedition. 1898–99. Wissenschaftliche Ergebnisse der Deutschen Tiefsee Expedition. Band II. Teil II.Google Scholar
15.Knudsen, M. 1901. Hydrographical Tables. Copenhagen.Google Scholar
16.Knudsen, M. 1923. Some new oceanographical instruments. Publications de Circonstance. No. 77.CrossRefGoogle Scholar
17.Lenormand, C. 1904. A new method for the estimation of organic matters in waters, more particularly in waters containing chlorides and bromides. Chemical News, Vol. 89.Google Scholar
18.Lohmann, H. 1908. Untersuchung zur Feststellung des vollstandigen Behaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchungen, v.d. Komm. z. wiss. Unters. d. deutsch. Meere in Kiel. Vol. X.Google Scholar
19.McClendon, J. F. 1917. The standardisation of a new colorimetric method for the determination of hydrogen-ion concentration, etc., of sea-water. Journal of Biological Chemistry, Vol. 30.CrossRefGoogle Scholar
20.Mill, H. R. 18891891. The Clyde Sea Area. Transactions Royal Society, Edinburgh, Vol. 37.Google Scholar
21.Murray, J. 1888. On the effects of winds on the distribution of temperature in the sea- and fresh-water lochs of the West of Scotland. Scottish Geographical Magazine.CrossRefGoogle Scholar
22.Nathansohn, A. 1909. Sur les relations qui existent entre les changements du plankton végétal et les phénomènes hydrographiques. Bulletin de l'lnstitut Océanographique. No. 140.Google Scholar
23.Orr, A. P. 1926. The Nitrite content of sea-water. Journal of the Marine Biological Association, N.S., Vol. 14.Google Scholar
24.Overton, E. 1907. In Nagel's Handbuch der Physiologie des Menschen, Bd. 2, T. 2, s. 807.Google Scholar
25.Ostenfeld, C. H., and Jespersen, P.. 1924. A standard net for plankton collections. Publications de Circonstance. No. 84.CrossRefGoogle Scholar
26.Pearsall, W. H. 1923. A theory of diatom periodicity. Journal of Ecology.CrossRefGoogle Scholar