Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T04:46:19.706Z Has data issue: false hasContentIssue false

Requirement for Thiamine Among Some Marine and Supra-Littoral Protista

Published online by Cambridge University Press:  11 May 2009

M. R. Droop
Affiliation:
Marine Station, Millport, Scotland

Extract

The requirement for thiamine was examined in eleven marine protists of littoral, supra-littoral or neritic origin. Six were found to have an absolute requirement for the vitamin.

The thiamine-requiring Chrysophyta responded to the pyrimidine half of the vitamin, whereas the two thiamine-requiring Pyrrophyta responded to the thiazole half.

All the species requiring thiamine were auxotrophic with respect to at least one other factor (usually vitamin B12).

For half-maximal growth, species responding to pyrimidine required 100–300 mμg/1. pyrimidine or thiamine and species responding to thiazole 2000 mμg/1. thiazole or thiamine.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Droop, M. R. 1953a. On the ecology of flagellates from some brackish and freshwater rock pools of Finland. Acta hot. fenn., No. 51, 52 pp.Google Scholar
Droop, M. R. 1953b. Phagotrophy in Oxyrrhis marina. Nature, Lond., Vol. 172, p. 250CrossRefGoogle ScholarPubMed
Droop, M. R. 1954. Cobalamin requirement in Chrysophyceae. Nature, Lond., Vol. 174, p. 520.CrossRefGoogle Scholar
Droop, M. R. 1955a. Some new supra-littoral Protista. J. mar. biol. Ass. U.K., Vol. 34, pp. 233–45.CrossRefGoogle Scholar
Droop, M. R. 1955b. A pelagic marine diatom requiring Cobalamin. J. mar. biol. Ass. U.K., Vol. 34, pp. 229–31.CrossRefGoogle Scholar
Droop, M. R. 1957. Auxotrophy and organic compounds in the nutrition of marine phyto-plankton. J. gen. Microbiol., Vol. 16, pp. 286–93.CrossRefGoogle Scholar
Harvey, H. W. 1939. Substances controlling the growth of a diatom. J. mar. biol. Ass. U.K., Vol. 23, pp. 499519CrossRefGoogle Scholar
Harvey, H. W. 1955. The Chemistry and Fertility of Sea Water, 224 pp. Cambridge University Press.Google Scholar
Hutner, S. H. 1948. Essentiality of constituents of sea water for growth of a marine diatom. Trans. N.Y. Acad. Sci., Vol. 10, pp. 136–41.CrossRefGoogle Scholar
Lewin, J. C. 1954. Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization. J. gen. Physiol., Vol. 37, pp. 589–99.CrossRefGoogle ScholarPubMed
Lwoff, A. & Lederer, E. 1935. Remarques sur Textrait de terre' envisage comme facteur de croissance pour les flagelles. C.R. Soc. Biol., Paris, T. 119, pp. 971–3.Google Scholar
Mclaughlin, J. J. A. 1958. Euryhaline chrysomonads: nutrition and toxigenesis in Prymnesium parvum with notes on Isochrysis galbana and Monochrysis lutheri. J. Protozool, Vol. 5, pp. 7580.CrossRefGoogle Scholar
Peach, E. A. & Drummond, J. C 1924. On the-culture of the marine diatom Nitzschia closterium (F) minutissima, in artificialsea water. Biochem. J., Vol. 18, pp. 464–68.CrossRefGoogle ScholarPubMed
Provasoli, L.Mclaughlin, J. J. A. & Droop, M. R. 1957. The development of artificial media for marine algae. Arch. Mikrobiol., Bd. 25, pp. 392428.CrossRefGoogle ScholarPubMed
Provasoli, L. & Pintner, I. J. 1953. Ecological implications of in vitro nutritional requirements of algal flagellates. Ann. N.Y. Acad. Sci., Vol. 56, pp. 839–51.CrossRefGoogle ScholarPubMed
Snell, E. E. 1951. Bacterial nutrition chemical factors. In Bacterial Physiology, ed. C. W. Werkman and P. W. Wilson. 707 pp. New York: Academic Press Inc.Google Scholar