Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T03:08:58.729Z Has data issue: false hasContentIssue false

The Size Structure of Deep-Sea Meiobenthos in the North-Eastern Atlantic: Nematode Size Spectra in Relation to Environmental Variables

Published online by Cambridge University Press:  11 May 2009

T. Soltwedel
Affiliation:
Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstraβe, 27515 Bremerhaven, Germany.
O. Pfannkuche
Affiliation:
Forschungszentrum für Marine Geowissenschaften, GEOMAR, Wischhofstraβe 1–3, 24148 Kiel, Germany
H. Thiel
Affiliation:
Alfred-Wegener-Institut für Polar- und Meeresforschung, Columbusstraβe, 27515 Bremerhaven, Germany.

Extract

The size distribution of benthic nematodes was investigated along different gradients of food availability in various regions of the north-eastern Atlantic: I, across the continental margin and II, with increasing distance from the continental rise. An overall trend for miniaturization with increasing distance from the food source was found. Moreover, our results indicate that seasonally varying food supply or a periodically pulsed input of organic matter to the sea floor affects nematode size spectra. The hypothesis is proposed that the life cycle of deep-sea nematode species and hence the size structure of their populations are related to seasonal energy availability. This dependence might result in one year life spans of deep-sea nematodes and probably other meiofauna.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnett, P.R.O., Watson, J. & Conelly, D., 1984. A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanologica Acta, 7, 399408.Google Scholar
Dayton, P.K. & Oliver, J.S., 1977. Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science, New York, 197, 5558.CrossRefGoogle ScholarPubMed
Debovée, F., Guidi, L.D. & Soyer, J., 1990. Quantitative distribution of deep-sea meiobenthos in the northwestern Mediterranean (Gulf of Lions). Continental Shelf Research, 10, 11231145.CrossRefGoogle Scholar
Dinet, A. & Vivier, M.H., 1977. Le meiobenthos abyssal du Golfe de Gascogne. Cahiers de Biologie Marine, 18, 8597.Google Scholar
Fahrbach, E. & Meincke, J., 1978. High frequency velocity fluctuations near the bottom over the continental slope. ‘Meteor’ Forschungsergebnisse, Reihe A, 20, 112.Google Scholar
Faubel, A., Hartwig, E. & Thiel, H., 1983. On the ecology of the benthos of sublittoral sediments, Fladen Ground, North Sea. I. Meiofauna standing stock and estimation of production. ‘Meteor’ Forschungsergebnisse, Reihe D, 36, 3548.Google Scholar
Fleeger, J.W., Thistle, D. & Thiel, H., 1988. Sampling equipment. In Introduction to the study of meiofauna (ed. R.P., Higgens and H., Thiel), pp. 115125. Washington DC: Smithsonian Institute Press.Google Scholar
Fournier, R.O., 1972. The transport of organic carbon to organisms living in the deep ocean. Proceedings of the Royal Society Edinburgh B, 73, 203211.Google Scholar
Gooday, A.J., 1988. A response by benthic Foraminifera to the deposition of phytodetritus in the deep sea. Nature, London, 332, 7073.Google Scholar
Gooday, A.J. & Lambshead, P.J.D., 1989. Influence of seasonally deposited phytodetritus on benthic foraminiferal populations in the bathyal northeast Atlantic: the species response. Marine Ecology Progress Series, 5, 5367.Google Scholar
Gooday, A.J., Pfannkuche, O. & Lambshead, P.J.D., 1996. An apparent lack of response by metazoan meiofauna to phytodetritus deposition in the bathyal north-east Atlantic. Journal of the Marine Biological Association of the United Kingdom, in press.CrossRefGoogle Scholar
Haedrich, R.L. & Rowe, G.T., 1977. Megafaunal biomass in the deep sea. Nature, London, 269, 141142.Google Scholar
Lochte, K., 1992. Bacterial standing stock and consumption of organic carbon in the benthic boundary layer of the abyssal North Atlantic. In Deep-seafood chains and the global carbon cycle (ed. G.T., Rowe and V., Pariente), pp. 110. The Netherlands: Kluwer Academic Publishers. [NATO ASI Series.]Google Scholar
Pfannkuche, O., 1985. The deep-sea meiofauna of the Porcupine Seabight and abyssal plain (NE Atlantic): population structure, distribution, standing stocks. Oceanologica Acta, 8, 343353.Google Scholar
Pfannkuche, O., 1992. Organic carbon flux through the benthic community in the temperate abyssal northeast Atlantic. In Deep-sea food chains and the global carbon cycle (ed. G.T., Rowe and V., Pariente), pp. 183198. The Netherlands: Kluwer Academic Publishers. [NATO ASI Series.]CrossRefGoogle Scholar
Pfannkuche, O., 1993. Benthic response to the sedimentation of participate organic matter at the BIOTRANS station, 47°N, 20°W. Deep-Sea Research, 40, 135149.Google Scholar
Pfannkuche, O., Beckmann, W., Christiansen, B., Lochte, K., Rheinheimer, G., Thiel, H. & Weikert, H., 1990. Biologischer Vertikaltransport und Energiehaushalt in der bodennahen Wasserschicht der Tiefsee. Berichte aus dem ZMK der Universität Hamburg, 10, 159 pp.Google Scholar
Pfannkuche, O. & Lochte, K., 1993. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting faeces. Deep-Sea Research, 40, 727737.CrossRefGoogle Scholar
Pfannkuche, O., Rheinheimer, G. & Thiel, H., 1993. BIO-C-FLUX. Biologischer Kohlenstoffflufβ in der bodennahen Wasserschicht des küstenfernen Ozeans. Berichte aus dem Institut für Meereskunde Kiel, 242, 129 pp.Google Scholar
Pfannkuche, O., Theeg, R. & Thiel, H., 1983. Benthos activity, abundance and biomass under an area of low upwelling off Morocco, Northwest Africa. ‘Meteor’ Forschungsergebnisse, Reihe D, 36, 8596.Google Scholar
Pfannkuche, O. & Thiel, H., 1987. Meiobenthic stocks and benthic activity on the NE-Svalbard Shelf and in the Nansen Basin. Polar Biology, 7, 253266.Google Scholar
Pfannkuche, O. & Thiel, H., 1988. Sample processing. In Introduction to the study of meiofauna (ed. R.P., Higgens and H., Thiel), pp. 134145. Washington DC: Smithsonian Institute Press.Google Scholar
Rice, A.L., Billet, D.S.M., Fry, J., John, A. W.G., Lampitt, R.S., Mantoura, R.C.F. & Morris, R.J., 1986. Seasonal deposition of phy todetritus to the deep-sea floor. Proceedings of the Royal Society of Edinburgh B, 88, 265279.Google Scholar
Rowe, G.T. & Menzel, D.W., 1971. Quantitative benthic samples from the deep Gulf of Mexico with some comments on the measurement of deep-sea biomass. Bulletin of Marine Science, 21, 556566.Google Scholar
Schwinghamer, P., 1981. Characteristic size distributions of integral benthic communities. Canadian Journal of Fisheries and Aquatic Sciences, 38, 12551263.CrossRefGoogle Scholar
Schwinghamer, P., 1983. Generating ecological hypotheses from biomass spectra using causal analysis: a benthic example. Marine Ecology Progress Series, 13, 151166.CrossRefGoogle Scholar
Schwinghamer, P., 1985. Observations on size-structure and pelagic coupling of some and abyssal benthic communities. In Proceedings of the 19th European Marine Biology Symposium (ed. P.E., Gibbs), pp. 347359. Cambridge University Press.Google Scholar
Sheldon, R.W. & Parsons, T.R., 1967. A continuous size spectrum for particulate matter in the sea. Journal of the Fisheries Research Board of Canada, 24, 909915.Google Scholar
Shuman, F.R. & Lorenzen, C.J., 1975. Quantitative degradation of chlorophyll by a marine herbivore. Limnology and Oceanography, 20, 580586.Google Scholar
Sibuet, M., Lambert, C.E., Chesselet, R. & Laubier, L., 1989. Density of the major size groups of benthic fauna and trophic input in deep basins of the Atlantic Ocean. Journal of Marine Research, 47, 851867.CrossRefGoogle Scholar
Soetaert, K. & Heip, C., 1989. The size structure of nematode assemblages along a Mediterranean deep-sea transect. Deep-Sea Research, 36, 93102.Google Scholar
Thiel, H., 1975. The size structure of the deep-sea benthos. Internationale Revue der Gesamten Hydrobiologie, 60, 575606.Google Scholar
Thiel, H., 1983. Meiobenthos and nanobenthos of the deep-sea. In The sea, vol. 8 (ed. G.T., Rowe), pp. 167230. New York: John Wiley & Sons Ltd.Google Scholar
Thiel, H. et al., 1988–89. Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biological Oceanography, 6, 203239.Google Scholar
Turley, C.M. & Carstens, M., 1991. Pressure tolerance of oceanic flagellates: implications for remineralization of organic matter. Deep-Sea Research, 38, 403413.Google Scholar
Turley, C.M., Lochte, K. & Patterson, D.J., 1988. A barophilic flagellate isolated from 4500 m in the mid-North Atlantic. Deep-Sea Research, 35, 10791092.Google Scholar
Walsh, J.J., 1981. On the nature of continental shelves. London: Academic Press.Google Scholar
Warwick, R.M., 1984. Species size distributions in marine benthic communities. Oecologia, 61, 3241.CrossRefGoogle ScholarPubMed