Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T11:06:10.793Z Has data issue: false hasContentIssue false

Spatial distribution of Alitta virens burrows in intertidal sediments studied by axial tomodensitometry

Published online by Cambridge University Press:  03 May 2013

Flora Salvo
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Suzanne C. Dufour*
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Philippe Archambault
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Georges Stora
Affiliation:
Aix-Marseille Université, UMR CNRS 7294, Mediterranean Institute of Oceanography, 13288 Marseille Cedex 09, France
Gaston Desrosiers
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
*
Correspondence should be addressed to: S.C. Dufour, Department of Biology, Memorial University of Newfoundland, St John's, NL Canada A1B 3X9 email: sdufour@mun.ca

Abstract

Relationships between sediment characteristics and the spatial organization of biogenic structures remain poorly understood, albeit important for characterizing bioturbation impacts and small-scale ecological patterns. Using axial tomodensitometry (CT-scan) and core sectioning, we studied the spatial distribution of Alitta virens burrows in sediment cores from two mudflats with different degrees of exposure along the St Lawrence Estuary, Canada. A variety of burrow morphologies was observed at both sites, with most being I-shaped. Most values measured (organic matter content, mean tomographic intensity, the number and diameter of burrow shafts and the percentage of space they occupy per transverse section) covaried with depth. The more sheltered site had higher organic matter and mud contents, and lower average tomographic intensity values. The spatial distribution of burrow shafts also differed between sites, with the more sheltered site having a higher number of burrow shafts and percentage of biogenic space in the upper sediment column, as well as a greater volume of biogenic structures that were connected to the surface (although intra-site variability was great). Along the horizontal plane and at various depths within sediments, burrow shafts were more randomly distributed at the exposed site, compared to a more even, maximal spacing at the sheltered site. In addition to finding differences in burrow organization at two spatial scales, we found significant correlations between tomographic intensity and (1) the number of burrow shafts, (2) biogenic space and (3) organic matter content. CT-scan data, including tomographic intensity, are useful for examining and comparing biogenic structures in sediment cores.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff, M.D., Magalhaes, P.J. and Ram, S.J. (2004) Image processing with ImageJ. Biophotonics International 11, 3642.Google Scholar
Aller, J.C. and Yingst, J.Y. (1978) Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). Journal of Marine Research 36, 201254.Google Scholar
Anderson, D.J. and Kendziorek, M. (1982) Spacing patterns in terebellid polychaetes. Journal of Experimental Marine Biology and Ecology 58, 193205.CrossRefGoogle Scholar
Andrew, N.L. and Mapstone, B.D. (1987) Sampling and the description of spatial pattern in marine ecology. Oceanography and Marine Biology: an Annual Review 25, 3990.Google Scholar
Andzhon, A.S. and Popov, A.V. (1979) Sensitivity of Nereis virens polychaetes to mechanical oscillations in water. Journal of Evolutionary Biochemistry and Physiology 15, 283287.Google Scholar
Bakken, T. and Wilson, R.S. (2005) Phylogeny of nereidids (Polychaeta, Nereididae) with paragnaths. Zoologica Scripta 34, 507547.CrossRefGoogle Scholar
Boespflug, X., Long, B.F.N. and Occhietti, S. (1995) CAT-scan in marine stratigraphy: a quantitative approach. Marine Geology 122, 281301.CrossRefGoogle Scholar
Brenchley, G.A. (1982) Mechanisms of spatial competition in marine soft-bottom communities. Journal of Experimental Marine Biology and Ecology 60, 1733.CrossRefGoogle Scholar
Butler, S. and Bird, F.L. (2007) Estimating density of intertidal ghost shrimps using counts of burrow openings. Is the method reliable? Hydrobiologia 589, 303314.CrossRefGoogle Scholar
Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445453.CrossRefGoogle Scholar
Commito, J.A. and Shrader, P.B. (1985) Benthic community response to experimental additions of the polychaete Nereis virens. Marine Biology 86, 101107.CrossRefGoogle Scholar
Crémer, J.-F., Long, B., Desrosiers, G., De Montety, L. and Locat, J. (2002) Application de la scanographie à l'étude de la densité des sédiments et à la caractérisation des structures sédimentaires: exemple des sédiments déposés dans la rivière Saguenay (Québec, Canada) après la crue de juillet 1996. Canadian Geotechnical Journal 39, 440450.CrossRefGoogle Scholar
Dashtgard, S.E., Gingras, M.K. and Pemberton, S.G. (2008) Grain-size controls on the occurrence of bioturbation. Palaeogeography, Palaeoclimatology, Palaeoecology 257, 224243.CrossRefGoogle Scholar
Davey, J.T. (1994) The architecture of the burrow of Nereis diversicolor and its quantification in relation to sediment–water exchange. Journal of Experimental Marine Biology and Ecology 179, 115129.CrossRefGoogle Scholar
De Montety, L., Long, B., Desrosiers, G., Crémer, J.-F., Locat, J. and Stora, G. (2003) Utilisation de la scanographie pour l'étude des sédiments: influence des paramètres physiques, chimiques et biologiques sur la mesure des intensités tomographiques. Canadian Journal of Earth Sciences 40, 937948.CrossRefGoogle Scholar
Desrosiers, G. and Brêthes, J.-C. (1984) Etude bionomique de la communauté à Macoma balthica de la batture de Rimouski. Sciences et Techniques de l'Eau 17, 2530.Google Scholar
Desrosiers, G., Brêthes, J.-C. and Coulombe, F. (1980) Etude bionomique de l'endofaune benthique de substrat meuble de la baie de Saint-Fabien-sur-Mer (Québec). Les cahiers de la SOUQAR, Rimouski, no. 6, 41 pp.Google Scholar
Dufour, S.C., Desrosiers, G., Long, B., Lajeunesse, P., Gagnoud, M., Labrie, J., Archambault, P. and Stora, G. (2005) A new method for three-dimensional vizualisation and quantification of biogenic structures in aquatic sediments using axial tomodensitometry. Limnology and Oceanography: Methods 3, 372380.Google Scholar
Duliu, O.G. (1999) Computer axial tomography in geosciences: an overview. Earth-Science Reviews 48, 265281.CrossRefGoogle Scholar
Dworschak, P.C. (1983) The biology of Upogebia pusilla (Petagna) (Decapoda, Thalassinidea) I. The burrows. Marine Ecology 4, 1943.CrossRefGoogle Scholar
François, F., Dalègre, K., Gilbert, F. and Stora, G. (1999) Variabilité spécifique à l'intérieur des groupes fonctionnels. Étude du remaniement sédimentaire de deux bivalves Veneridae, Ruditapes decussatus et Venerupis aurea. Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la Vie 322, 339345.Google Scholar
François, F., Gerino, M., Stora, G., Durbec, J.-P. and Poggiale, J.-C. (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Marine Ecology Progress Series 229, 127136.CrossRefGoogle Scholar
Gagnoud, M., Lajeunesse, P., Desrosiers, G., Long, B., Dufour, S., Labrie, J., Mermillod-Blondin, F. and Stora, G. (2009) Litho- and biofacies analysis of postglacial marine mud using CT-scanning. Engineering Geology 103, 106111.CrossRefGoogle Scholar
Gerino, M., Stora, G., François-Carcaillet, F., Gilbert, F., Poggiale, J.-C., Mermillod-Blondin, F., Desrosiers, G. and Vervier, P. (2003) Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification. Vie et Milieu 53, 221231.Google Scholar
Gingras, M.K., Pemberton, S.G., Dashtgard, S. and Dafoe, L. (2008) How fast do marine invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology 270, 280286.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F. and Lemcke, G. (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.CrossRefGoogle Scholar
Herringshaw, L.G., Sherwood, O.A. and McIlroy, D. (2010) Ecosystem engineering by bioturbating polychaetes in event bed microcosms. Palaios 25, 4658.CrossRefGoogle Scholar
Hounsfield, G.N. (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. British Journal of Radiology 46, 10161022.CrossRefGoogle Scholar
Krantzberg, G. (1985) The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environmental Pollution Series A, Ecological and Biological 39, 99122.CrossRefGoogle Scholar
Kristensen, E. (1984) Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water. Journal of Experimental Marine Biology and Ecology 75, 171190.CrossRefGoogle Scholar
Kristensen, E. (1985) Oxygen and inorganic nitrogen exchange in a ‘Nereis virens’ (Polychaeta) bioturbated sediment–water system. Journal of Coastal Research 1, 109116.Google Scholar
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C.O. and Banta, G.T. (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446, 285302.CrossRefGoogle Scholar
Mermillod-Blondin, F., Marie, S., Desrosiers, G., Long, B., de Montety, L., Michaud, E. and Stora, G. (2003) Assessment of the spatial variability of intertidal benthic communities by axial tomodensitometry: importance of fine-scale heterogeneity. Journal of Experimental Marine Biology and Ecology 287, 193208.CrossRefGoogle Scholar
Mermillod-Blondin, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K. and Mauclaire, L. (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36, 271284.CrossRefGoogle Scholar
Michaud, E., Desrosiers, G., Long, B., de Montety, L., Crémer, J.-F., Pelletier, E., Locat, J., Gilbert, F. and Stora, G. (2003) Use of axial tomography to follow temporal changes of benthic communities in an unstable sedimentary environment (Baie des Ha! Ha!, Saguenay Fjord). Journal of Experimental Marine Biology and Ecology 285/286, 265–282.Google Scholar
Michaud, E., Desrosiers, G., Mermillod-Blondin, F., Sundby, B. and Stora, G. (2005) The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326, 7788.CrossRefGoogle Scholar
Miron, G.Y. and Desrosiers, G.L. (1990) Distributions and population structures of two intertidal estuarine polychaetes in the lower St Lawrence estuary, with special reference to environmental factors. Marine Biology 105, 297306.CrossRefGoogle Scholar
Miron, G., Desrosiers, G., Retière, C. and Lambert, R. (1991a) Dispersion and prospecting behaviour of the polychaete Nereis virens (Sars) as a function of density. Journal of Experimental Marine Biology and Ecology 145, 6577.CrossRefGoogle Scholar
Miron, G., Desrosiers, G., Retière, C. and Lambert, R. (1991b) Evolution spatio-temporelle du réseau de galeries chez le polychète Nereis virens (Sars). Canadian Journal of Zoology 69, 3942.CrossRefGoogle Scholar
Ouellette, D., Desrosiers, G., Gagné, J.-P., Gilbert, F., Poggiale, J.-C., Blier, P.U. and Stora, G. (2004) Effects of temperature on in vitro sediment reworking processes by a gallery biodiffusor, the polychaete Neanthes virens. Marine Ecology Progress Series 266, 185193.CrossRefGoogle Scholar
Papaspyrou, S., Gregersen, T., Kristensen, E., Christensen, B. and Cox, R. (2006) Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor and N. virens). Marine Biology 148, 541550.CrossRefGoogle Scholar
Piot, A., Rochon, A., Stora, G. and Desrosiers, G. (2008) Experimental study on the influence of bioturbation performed by Nephtys caeca (Fabricius) and Nereis virens (Sars) annelidae on the distribution of dinoflagellate cysts in the sediment. Journal of Experimental Marine Biology and Ecology 359, 92101.CrossRefGoogle Scholar
Pralle, N., Bahner, M.L. and Benkler, J. (2001) Computer tomographic analysis of undisturbed samples of loose sands. Canadian Geotechnical Journal 38, 770781.CrossRefGoogle Scholar
Quinn, G.P. and Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Reise, K. (1981) High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoland Marine Research 34, 413425.Google Scholar
Renaud, L. (2000) Evolution et dégradation du barachois de Paspébiac. MSc thesis. Université du Québec à Rimouski, Canada.Google Scholar
Risk, M.J., Venter, R.D., Pemberton, S.G. and Buckley, D.E. (1978) Computer simulation and sedimentological implications of burrowing by Axius serratus. Canadian Journal of Earth Sciences 15, 13701374.CrossRefGoogle Scholar
Rosenberg, R., Davey, E., Gunnarsson, J., Norling, K. and Frank, M. (2007) Application of computer-aided tomography to visualize and quantify biogenic structures in marine sediments. Marine Ecology Progress Series 331, 2334.CrossRefGoogle Scholar
Rosenberg, R., Grémare, A., Duchêne, J.C., Davey, E. and Frank, M. (2008) 3D visualization and quantification of marine benthic biogenic structures and particle transport utilizing computer-aided tomography. Marine Ecology Progress Series 363, 171182.CrossRefGoogle Scholar
Simberloff, C. (1979) Nearest neighbor assessments of spatial configurations of circles rather than points. Ecology 60, 679685.CrossRefGoogle Scholar
Underwood, A.J. (1997) Experiments in ecology: their logical design and interpretation using analysis of variance. Cambridge: Cambridge University Press.Google Scholar
Wethey, D.S. and Woodin, S.A. (2005) Infaunal hydraulics generate porewater pressure signals. Biological Bulletin. Marine Biological Laboratory, Woods Hole 209, 139145.CrossRefGoogle ScholarPubMed
Zorn, M.E., Gingras, M.K. and Pemberton, S.G. (2010) Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications. Palaios 25, 5972.CrossRefGoogle Scholar