Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:51:58.773Z Has data issue: false hasContentIssue false

Species richness, relative abundance and dwarfism in Azorean bivalves: consequences of latitude, isolation or productivity? Or all three?

Published online by Cambridge University Press:  13 December 2013

Brian Morton*
Affiliation:
School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
Regina Tristão Da Cunha
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Polo dos Açores, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal
António M. De Frias Martins
Affiliation:
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Polo dos Açores, Universidade dos Açores, 9501-801 Ponta Delgada, Portugal
*
Correspondence should be addressed to: Brian Morton, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China email: prof_bmorton@hotmail.co.uk

Abstract

The Azorean seabed is depauperate in terms of bivalve species richness, there being only between ~70 and 80 recorded to date, most being sub-tidal and generally lacking of specialists. Analysis of large numbers (>3200) of Azorean bivalve shells has revealed that, overall, each species is only ~50% the shell length size of Mediterranean conspecifics. Thus, although Azorean bivalve size may be a consequence of decreasing latitude (Bergmann's Rule), the islands are located at approximately the same latitude as the Mediterranean (and are influenced by those waters) where larger conspecifics occur. Hence, the main reason for bivalve dwarfism in the archipelago appears to result from low oceanic productivity (Foster's Rule). This, in turn, is associated with low diversity, possibly resulting from past extinctions and isolation, and low population sizes, except for Ervilia castanea, which here overwhelmingly occupies higher-energy inshore habitats and associated higher productivities. Nevertheless, this species too is dwarfed by mainland conspecifics. Similarly, the introduced Venerupis decussata, found solely within the lagoonal environment of Fajã de Santo Cristo on São Jorge, is somewhat smaller than its mainland conspecifics, although it is abundant enough to warrant artisanal exploitation. This study therefore, supports Foster's Rule and argues for the role of nutrient deficiency in regulating Azorean species richness and individual maximum size. In waters of locally higher productivities, however, population densities increase, but not size.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J.A. (1954) A comparative study of the British species of Nucula and Nuculana. Journal of the Marine Biological Association of the United Kingdom 33, 457472.Google Scholar
Allen, J.A. (1978) Evolution of the deep sea protobranch bivalves. Philosophical Transactions of the Royal Society of London, Series B 284, 387401.Google Scholar
Ávila, S.P. (2000) Shallow-water marine molluscs of the Azores: biogeographical relationships. Arquipélago-Life and Marine Sciences Supplement 2(Part A), 99131.Google Scholar
Ávila, S.P., Azevedo, J.M.N., Gonçalves, J.M., Fontes, J. and Cardigos, F. (1998) Checklist of the shallow-water marine molluscs of the Azores. 1–Pico, Faial, Flores and Corvo. Açoreana 8, 487523.Google Scholar
Ávila, S.P., Azevedo, J.M.N., Gonçalves, J.M., Fontes, J. and Cardigos, F. (2000) Checklist of the shallow-water marine molluscs of the Azores: 2–São Miguel Island. Açoreana 9, 139173.Google Scholar
Ávila, S.P., Santos, A.C., Penteado, A.M., Rodrigues, A.M., Quintino, I. and Machado, M.I. (2005) The molluscs of the intertidal algal turf in the Azores. Iberus 23, 6776.Google Scholar
Ávila, S.P., Madeira, P., Mendes, N., Rebelo, A.C., Medeiros, A., Gomes, C., García-Talavera, F., Marques da Silva, C., Cachão, M., Hillaire-Marcel, C. and Martins, A.M.F. (2008a) Mass extinctions in the Azores during the last glaciation: fact or myth? Journal of Biogeography 35, 11231129.Google Scholar
Ávila, S.P., Madeira, P., Marques da Silva, C., Cachão, M., Landau, B., Quartau, R. and Martins, A.M.F. (2008b) Local disappearance of bivalves in the Azores during the last glaciation. Journal of Quaternary Science 23, 777785.Google Scholar
Ávila, S.P., Madeira, P., Zazo, C., Kroh, A., Kirby, M., Marques da Silva, C., Cachão, M. and Martins, A.M.F. (2009a) Palaeoecology of the Pleistocene (MIS 5.5) outcrops of Santa Maria Island (Azores) in a complex oceanic tectonic setting. Palaeogeography, Palaeoclimatology, Palaeoecology 274, 1831.Google Scholar
Ávila, S.P., Marques da Silva, C., Schiebel, R., Cecca, F., Backeljau, T. and Martins, A.M.F. (2009b) How did they get here? Palaeobiogeography of the Pleistocene marine molluscs of the Azores. Bulletin de la Société Géologique de France 180, 295307.Google Scholar
Bamber, R.N. and Henderson, P.A. (1985) Morphological variation in British atherinids, and the status of Atherina presbyter Cuvier (Pisces: Atherinidae). Biological Journal of the Linnean Society 25, 6176.CrossRefGoogle Scholar
Bergmann, C. (1847) Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. Göttinger Studien 3, 595708.Google Scholar
Berke, S.E., Jablonski, D., Krug, AZ., Roy, K. and Tomasovych, A. (2012) Beyond Bergmann's rule: size-latitude relationships in marine Bivalvia world-wide. Global Ecology and Biogeography 22, 173183.Google Scholar
Borges, P.A.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A.F., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., Santos, R.S., Silva, L., Vieira, P. and Vieira, V. (eds) (2010) A list of the terrestrial and marine biota from the Azores. Cascais: Principia, 432 pp.Google Scholar
Briggs, J.C. (1966) Oceanic islands, endemism and marine paleotemperatures. Systematic Zoology 15, 153163.Google Scholar
Briones-Fourzán, P. and Lozano-Alvarez, E. (1991) Aspects of the biology of the giant isopod Bathynomus giganteus A. Milne Edwards, 1879 (Flabellifera: Cirolanidae), off the Yucatan Peninsula. Journal of Crustacean Biology 11, 375385.CrossRefGoogle Scholar
Cosel von, R. (1995) Fifty-one new species of marine bivalves from tropical West Africa. Iberus 13, 1115.Google Scholar
Cunha, L., Amaral, A., Medeiros, V., Martins, G.M., Wallenstein, F.F.M.M., Couto, R.P., Neto, A.I. and Rodrigues, A. (2008) Bioavailable metals and cellular effects in the digestive gland of marine limpets living close to shall water hydrothermal vents. Chemosphere 71, 13561362.Google Scholar
Daley, G.M. (1999) Environmentally controlled variation in shell zize of Ambonychia Hall (Mollusca: Bivalvia) in the type Cincinnatian (Upper Ordovician). PALAIOS 14, 520529.Google Scholar
Dando, P.R., Southwood, A.J. and Southward, E.C. (1986) Chemoautotrophic Symbionts in the Gills of the Bivalve Mollusc Lucinoma borealis and the Sediment Chemistry of its Habitat. Philosophical Transactions of the Royal Society: Series B 227, 227247.Google Scholar
Fisher, J., Frank, K. and Leggett, W. (2010) Breaking Bergmann's rule: truncation of Northwest Atlantic marine fish body sizes. Ecology 91, 24992505.CrossRefGoogle ScholarPubMed
Foster, J.B. (1964) The evolution of mammals on islands. Nature 202, 234235.Google Scholar
Freeman, A.S., Wright, J.T., Hewitt, C.L., Campbell, M.L. and Szeto, K. (2013) A gastropod's induced behavioral and morphological responses to invasive Carcinus maenas in Australia indicate a lack of novelty advantage. Biological Invasions 15, 17951805.Google Scholar
Martins, A.M.F., Ávila, S., Borges, J.P., Madeira, P. and Morton, B. (2009) Illustrated checklist of the infralittoral molluscs off Vila Franco do Campo. In Martins, A.M.F. (ed.) The marine fauna and flora of the Azores. Proceedings of the Third International Workshop of Malacology and Marine Biology, São Miguel 2006. Açoreana (Supplement 6), pp. 15–103.Google Scholar
Gofas, S. and Beu, A. (2002). Tonnoidean gastropods of the North Atlantic Seamounts and the Azores. American Malacological Bulletin 17, 91108.Google Scholar
Hart, C.W. Jr and Hart, D.G. (1979) Ostracods (Arthropoda: Crustacea: Ostracoda). In Hart, C.W. Jr and Fuller, S.L.H. (eds) Pollution ecology of estuarine invertebrates. London: Academic Press, pp. 127144.Google Scholar
Huber, M. (2010) Compendium of Bivalves. A full-color guide to 3300 of the world's marine bivalves. A status on Bivalvia after 250 years of research. Hackenheim: ConchBooks, 901 pp.Google Scholar
Huskin, I., Anadon, R., Medinal, G., Head, R.N. and Harris, R.P. (2001) Mesozooplankton distribution and copepod grazing in the subtropical Atlantic near the Azores: influence of mesoscale structures. Journal of Plankton Research 23, 671691.Google Scholar
Jeffreys, JG. (1881) On the Mollusca procured during the ‘Lightning’ and ‘Porcupine’ Expeditions, 1868–70. (Part III). Proceedings of the Zoological Society of London 1881, 693724.Google Scholar
Jurić, I., Bušelić, I., Ezgeta-Balić, D., Vrgoč, N. and Peharda, M. (2012) Age, growth and condition index of Venerupis decussata (Linnaeus, 1758) in the Eastern Adriatic Sea. Turkish Journal of Fisheries and Aquatic Sciences 12, 613618.CrossRefGoogle Scholar
Kay, E.A. (1995) Pacific island marine mollusks: systematics. In Maragos, J.E., Peterson, M.N.A. and Eldredge, L.G. (eds) Marine and coastal biodiversity in the Tropical Island Pacific Region. Honolulu, HI: East West Center, pp. 135159.Google Scholar
Knudsen, J. (1967) The deep-sea Bivalvia. Scientific Reports of the John Murray Expedition 11, 237343 + plates 1–3.Google Scholar
Knudsen, J. (1970) The systematics and biology of abyssal and hadal Bivalvia. Galathea Reports 11, 1241 + plates I–XX.Google Scholar
Kornicker, L.S. (1967) A study of three species of Sarsiella (Ostracoda: Myodocopa). Proceedings of the United States National Museum 122, 146.Google Scholar
Levings, A.H. (2008) A life history model for the giant crab Pseudocarcinus gigas. PhD thesis. Deakin University, Warrnambool, Australia.Google Scholar
Martins, A.M.F. (2010) Mollusca. In Borges, P.A.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A.F., Melo, I., Parente, M., Raposeiro, P., Rodrigues, P., Santos, R.S., Silva, L., Vieira, P. and Vieira, V. (eds) A list of the terrestrial and marine biota from the Azores. Cascais: Principia, pp. 311320.Google Scholar
Martins, A.M.F., Ávila, S., Borges, J.P., Madeira, P. and Morton, B. (2009) Illustrated checklist of the infralittoral molluscs off Vila Franca do Campo. In Martins, A.M.F. (ed.) The marine fauna and flora of the Azores. Proceedings of the Third International Workshop of Malacology and Marine Biology, São Miguel 2006. Azoreana (Supplement 6), pp. 15–103.Google Scholar
Martins, G.M., Patarra, R.F., Álvaro, N.V., Prestes, A.C.L. and Neto, A.I. (2013) Effects of coastal orientation and depth on the distribution of subtidal benthic assemblages. Marine Ecology 2013, 19.Google Scholar
Morton, B. (1967) Malacological Report. In Final Report, Chelsea College Azores Expedition 1965. London: The Chelsea College, pp. 3039.Google Scholar
Morton, B. (1982a). The mode of life and functional morphology of Gregariella coralliophaga (Gmelin 1791) (Bivalvia: Mytilacea) with a discussion on the evolution of the boring Lithophaginae and adaptive radiation in the Mytilidae. In Morton, B. and. Tseng, C.K. (eds) Proceedings of the First International Marine Biological Workshop: The marine flora and fauna of Hong Kong and southern China, Hong Kong, 1980. Hong Kong: Hong Kong University Press, pp. 875–895.Google Scholar
Morton, B. (1982b) Functional morphology of Bathyarca pectunculoides (Bivalvia: Arcacea) from a deep Norwegian fjord with a discussion of the mantle margin in the Arcoidea. Sarsia 67, 269282.Google Scholar
Morton, B. (1983) Coral associated bivalves of the Indo-Pacific. In Wilbur, K.M. and Russell-Hunter, W.D. (eds) The Mollusca. Vol. 6, Ecology. New York: Academic Press, pp. 139224.Google Scholar
Morton, B. (1990a) The biology and functional morphology of Ervilia castanea (Bivalvia: Tellinacea) from the Azores. In Martins, A.M.F. (ed.) Proceedings of the First International Workshop of Malacology, São Miguel, Azores, 1988. Açoreana 1990 Supplement, pp. 75–96.Google Scholar
Morton, B. (1990b) The intertidal ecology of Ilheu de Vila Franca - a drowned volcanic crater in the Azores. In Martins, A.M.F. (ed.) Proceedings of the First International Workshop of Malacology, São Miguel, Azores, 1988. Açoreana 1990 Supplement, pp. 3–20.Google Scholar
Morton, B. (1995) The biology and functional morphology of Trichomusculus semigranatus (Bivalvia: Mytiloidea) from the Azores. In Martins, A.M.F. (ed.) Proceedings of the Second International Workshop of Malacology and Marine Biology, São Miguel, Azores 1991. Azoreana Supplement 1995, pp. 279–295.Google Scholar
Morton, B. (2009) Aspects of the biology and functional morphology of Timoclea ovata (Bivalvia: Veneroidea: Venerinae) in the Azores, Portugal, and a comparison with Chione elevata (Chioninae). In Martins, A.M.F. (ed.) Proceedings of the Third International Workshop of Malacology and Marine Biology, São Miguel, Azores 2006. Açoreana Supplement 6, pp. 105–119.Google Scholar
Morton, B. (2012a) The biology and functional morphology of Nucula pusilla (Bivalvia: Protobranchia: Nuculidae) from Western Australia, Australia: primitive or miniature simplicity? Records of the Western Australian Museum 27, 85100.Google Scholar
Morton, B. (2012b) Foregut anatomy and predation by Charonia lampas (Gastropoda: Prosobranchia: Neotaenioglossa) attacking Ophidiaster ophidianus (Asteroidea: Ophidiasteridae) in the Azores, with a review of triton feeding behaviour. Journal of Natural History 46, 26212637.Google Scholar
Morton, B. (2013) The functional morphology of the abyssal Limopsis cristata (Arcoida: Limopsidae), with a discussion on the evolution of the more advanced bivalve foot. Acta Zoologica (Stockholm) 94, 7485.Google Scholar
Morton, B. (In press) The biology and functional morphology of the deep water deposit-feeding Arcopagia crassa (Bivalvia: Tellinoidea), with pallial eyes, and the first record of Arcopella balaustina (Tellinoidea) from the Azores. In Xavier, J.R., Costa, A.C. and de Martins, A.M.F. (eds) Proceedings of the Fourth International Workshop of Malacology and Marine Biology, São Miguel, Azores 2011. Azoreana Supplement 10.Google Scholar
Morton, B. and Britton, J.C. (2000a) The origins of the coastal and marine flora and fauna of the Azores. Oceanography and Marine Biology: an Annual Review 38, 1384.Google Scholar
Morton, B. and Britton, J.C. (2000b) Origins of the Azorean intertidal biota: the significance of introduced species, survivors of chance events. Arquipélago- Life and Marine Sciences Supplement 2(Part A), 2951.Google Scholar
Morton, B. and Tristão da Cunha, R. (1993) The Fajã de Santo Cristo, São Jorge, revisited and a case for Azorean coastal conservation. Açoreana 1993, 539553.Google Scholar
Morton, B., Britton, J.C. and Martins, A.M.F. (1998) Coastal Ecology of the Azores. Azores, Portugal: Sociedade Afonso Chaves, Ponta Delgada, São Miguel.Google Scholar
Nakaoka, M. (1994) Size-dependent reproductive traits of Yoldia notabilis (Bivalvia: Protobranchia). Marine Ecology Progress Series 114, 129137.Google Scholar
Nyst, PHJ. (1848) Tableau synoptique et synonymique des espèces vivantes et fossiles de la familie des Arcacées. pt. 1 Genre Arca. Mémoires de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique 22, 179.Google Scholar
Ó Foighil, DO, Josefowicz, CJ. (1999) Amphi-Atlantic phylogeography of direct-developing lineages of Lasaea, a genus of brooding bivalves. Marine Biology 135, 115122.Google Scholar
Oliver, G. and Allen, J.A. (1980) The functional and adaptive morphology of the deep-sea species of the family Limopsidae (Bivalvia: Arcoida) from the Atlantic. Philosophical Transactions of the Royal Society of London, Series B 291, 77125.Google Scholar
Poppe, G.T. and Goto, Y. (1993) European Sea Shells. Volume II. (Scaphopoda, Bivalvia, Cephalopoda). Wiesbaden: Hemmen.Google Scholar
Raines, B. and Huber, M. (2012) Biodiversity quadrupled – revision of Easter Island and Salas y Gómez bivalves. Zootaxa 3217, 1106.Google Scholar
Rehder, H.A. (1980) The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gómez. Smithsonian Contributions to Zoology 289, 1167.Google Scholar
Reid, R.G.B. and Crosby, Y.S.P. (1980) The raptorial siphonal apparatus of the carnivorous septibranch Cardiomya planetica Dall (Mollusca: Bivalvia), with notes on feeding and digestion. Canadian Journal of Zoology 58, 670679.Google Scholar
Ridgway, I.D., Richardson, C.A. and Austad, S.N. (2011) Maximum shell size, growth rate, and maturation age correlate with longevity in bivalve molluscs. Journal of Gerontology A, Biological Science and Medical Science 66A, 183190.Google Scholar
Rodríguez, R.G. and Sánchez, J.M.P. (1997) Moluscos Bivalvos de Canarias. Las Palmas de Gran Canaria: Ediciones del Cabildo Insular de Gran Canaria.Google Scholar
Roeleveld, M.A.C. (2002) Tentacle morphology of the giant squid Architeuthis from the North Atlantic and Pacific Oceans. Bulletin of Marine Science 71, 725737.Google Scholar
Roy, K. (2008) Dynamics of body size evolution. Science 321, 14511452.Google Scholar
Roy, K. and Martien, K.K. (2001) Latitudinal distribution of body size in north-eastern Pacific marine bivalves. Journal of Biogeography 28, 485493.Google Scholar
Salas, C. and Gofas, S. (1998) Description of four new species of Neolepton Monterosato, 1875 (Mollusca: Bivalvia: Neoleptonidae), with comments on the genus and on its affnity with the Veneracea. Ophelia 48, 3570.Google Scholar
Seaward, D.R. (1982) Distribution of the marine molluscs of north-west Europe. Peterborough: Joint Nature Conservancy Council.Google Scholar
Sneli, J. A., Schiøtte, T., Jensen, K.R., Wikander, P.B., Stokland, Ø. and Sørensen, J. (2005) The marine Mollusca of the Faeroes. Annales Societatis Scientiarum Færoensis Supplementum XXXXII, 1190.Google Scholar
Solem, A. (1954). Living species of the pelecypod family Trapeziidae. Proceedings of the Malacological Society of London 31, 6484.Google Scholar
Tebble, N. (1966). British bivalve seashells. London: British Museum (Natural History).Google Scholar
Timofeev, S.F. (2001) Bergmann's Principle and deep-water gigantism in marine crustaceans. Biology Bulletin 28, 646650. [Russian version: Izvestiya Akademii Nauk, Seriya Biologicheskaya 28, 764–768.]CrossRefGoogle Scholar
Vermeij, G.J. (1990) Tropical Pacific pelecypods and productivity: a hypothesis. Bulletin of Marine Science 47, 6267.Google Scholar
Yonge, C.M. (1949) On the structure and adaptations of the Tellinacea, deposit-feeding Eulamellibranchia. Philosophical Transactions of the Royal Society Series B 234, 2976.Google Scholar