Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T12:56:14.219Z Has data issue: false hasContentIssue false

Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast

Published online by Cambridge University Press:  23 April 2015

Mladen Šolić*
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Nada Krstulović
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Danijela Šantić
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Stefanija Šestanović
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Marin Ordulj
Affiliation:
Department of Marine Studies, University of Split, Split, Croatia
Natalia Bojanić
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
Grozdan Kušpilić
Affiliation:
Institute of Oceanography and Fisheries, Split, Croatia
*
Correspondence should be addressed to: M. Šolić, Institute of Oceanography and Fisheries, Split, Croatia email: solic@izor.hr

Abstract

The structure of the microbial food web was studied in six estuary areas along the eastern Adriatic coast during March, July and October 2012. Limitation by phosphorus, not nitrogen, was a common feature for all studied estuaries. Heterotrophic bacteria and autotrophic picoplankton (APP) (particularly picoeukaryotes and Synechococcus) can reach notable abundances and biomasses, suggesting potential importance of the picoplankton community in P-limited estuarine environments. The main features of the microbial community structure in these environments included: (1) higher heterotrophic biomass in comparison to autotrophic biomass within the picoplankton community; (2) general domination of picoeukaryotes within the APP community, and increase of absolute and relative biomass of prokaryotic autotrophs (Prochlorococcus and Synechococcus) in the total APP in P-limited conditions; (3) domination of Synechococcus over Prochlorococcus biomass in all studied conditions, and common spatial distribution of these two groups of cyanobacteria, which was mostly determined by concentration of phosphorus; (4) relatively high contribution (about 50%) of LNA bacteria in the total bacterial abundance; and (5) relatively high contribution (about 33%) of heterotrophic pico-flagellates in the total flagellate abundance.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Azam, F., Fenchel, T., Field, K.G., Gray, K.S., Meyer-Reil, L.A. and Thigstad, F. (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257263.CrossRefGoogle Scholar
Badylak, S. and Phlips, E.J. (2004) Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research 26, 12291247.CrossRefGoogle Scholar
Bell, T. and Kalff, J. (2001) The contribution of picophytoplankton in marine and freshwater systems of different trophic status and depth. Limnology and Oceanography 46, 12431248.CrossRefGoogle Scholar
Berglund, J., Müren, U., Båmstedt, U. and Andersson, A. (2007) Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52, 121131.CrossRefGoogle Scholar
Bojanić, N., Šolić, M., Krstulović, N., Šestanović, S., Marasović, I. and Ninčević, Ž. (2005) Temporal variability in abundance and biomass of ciliates and copepods in the eutrophicated part of Kaštela Bay (Middle Adriatic Sea). Helgoland Marine Research 59, 107120.CrossRefGoogle Scholar
Bojanić, N., Šolić, M., Krstulović, N., Šestanović, S., Ninčević Gladan, Ž., Marasović, I. and Brautović, I. (2006) The role of ciliates within the microbial food web in the eutrophicated part of Kaštela Bay (middle Adriatic Sea). Scientia Marina 70, 431442.CrossRefGoogle Scholar
Bojanić, N., Vidjak, O., Šolić, M., Krstulović, N., Brautović, I., Matijević, S., Kušpilić, G., Šestanović, S., Ninčević Gladan, Ž. and Marasović, I. (2012) Community structure and seasonal dynamics of tintinnid ciliates in Kaštela Bay (middle Adriatic Sea). Journal of Plankton Research 34, 510530.CrossRefGoogle Scholar
Boraas, M.E., Bolgrien, D.W. and Holen, D.A. (1991) Determination of eubacterial and cyanobacterial size and number in Lake Baikal using epifluorescence. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76, 537544.CrossRefGoogle Scholar
Borsheim, K.Y. and Bratbak, G. (1987) Cell volume to cell carbon conversion factors for a bacteriovorous Monas sp. enriched from seawater. Marine Ecology Progress Series 36, 171175.CrossRefGoogle Scholar
Bray, J.R. and Curtis, J.T. (1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325349.CrossRefGoogle Scholar
Brzezinski, M.A. (1985) The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21, 347357.CrossRefGoogle Scholar
Buitenhuis, E.T., Li, W.K.W., Vaulot, D., Lomas, M.W., Landry, M., Partensky, F., Karl, D.M., Ulloa, O., Campbell, L., Jacquet, S., Lantoine, F., Chavez, F., Macias, D., Gosselin, M. and McManus, G.B. (2012) Picophytoplankton biomass distribution in the global ocean. Earth System Science Data 4, 3746.CrossRefGoogle Scholar
Callieri, C. and Stockner, J.G. (2002) Freshwater autotrophic picoplankton: a review. Journal of Limnology 61, 114.CrossRefGoogle Scholar
Calvo-Díaz, A. and Morán, X.A.G. (2006) Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquatic Microbial Ecology 42, 159174.CrossRefGoogle Scholar
Campbell, L., Nolla, H.A. and Vaulot, D. (1994) The importance of Prochlorococcus to community structure in the central North Pacific Ocean. Limnology and Oceanography 39, 954961.CrossRefGoogle Scholar
Campbell, L., Landry, M.R., Constantinou, J., Nolla, H.A., Brown, S.L., Liu, H. and Caron, D.A. (1998) Response of microbial community structure to environmental forcing in the Arabian Sea. Deep-Sea Research II 45, 23012325.CrossRefGoogle Scholar
Campbell, L. and Vaulot, D. (1993) Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA). Deep-Sea Research I 40, 20432060.CrossRefGoogle Scholar
Caroppo, C. (2000) The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. Journal of Plankton Research 22, 381397.CrossRefGoogle Scholar
Chisholm, S.W., Frankel, S.L., Goericke, R., Olson, R.J., Palenik, B., Waterbury, J.B., West-Johnsrud, L. and Zettler, E.R. (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology 157, 297300.CrossRefGoogle Scholar
Christaki, U., Courties, C., Massana, R., Catala, P., Lebaron, P., Gasol, J.M. and Zubkov, M.V. (2011) Optimized routine flow cytometric enumeration of heterotrophic flagellates using SYBR Green I. Limnology and Oceanography: Methods 9, 329339.Google Scholar
Clarke, K.R. and Green, R.H. (1988) Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46, 213226.CrossRefGoogle Scholar
Cole, J.J., Findlay, S. and Pace, M.L. (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43, 110.CrossRefGoogle Scholar
Cotner, J.B. and Biddanda, B.A. (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5, 105121.CrossRefGoogle Scholar
Cushman-Roisin, B., Malačić, V. and Gačić, M. (2001) Tides, seiches and low-frequency oscillations. In Cushman-Roisin, B., Gačić, M., Poulain, P.M. and Artegiani, A. (eds) Physical oceanography of the Adriatic Sea. Dordrecht: Kluwer Academic Publishers, pp. 217240.CrossRefGoogle Scholar
Dortch, Q. and Whitledge, T.E. (1992) Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby region? Continental Shelf Research 12, 12931309.CrossRefGoogle Scholar
Ducklow, H.W., Purdie, D.A., Williams, P.J.L. and Davis, J.M. (1986) Bacterioplankton: a sink for carbon in a coastal marine plankton community. Science 232, 865867.CrossRefGoogle Scholar
DuRand, M.D. and Olson, R.J. (2001) Phytoplankton population dynamics at the Bermuda Atlantic time-series station in the Sargasso Sea. Deep-Sea Research II 48, 19832003.CrossRefGoogle Scholar
Fahnenstiel, G.L. and Carrick, H.J. (1992) Phototrophic picoplankton in Lakes Huron and Michigan: abundance, distribution, composition and contribution to biomass and production. Canadian Journal of Fisheries and Aquatic Science 49, 379388.CrossRefGoogle Scholar
Fonda Umani, S. and Beram, A. (2003) Seasonal variations in the dynamics of microbial plankton communities: first estimates from experiments in the Gulf of Trieste. Northern Adriatic Sea. Marine Ecology Progress Series 247, 116.CrossRefGoogle Scholar
Fuhrman, J.A. (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399, 541548.CrossRefGoogle ScholarPubMed
Fuhrman, J.A. and Azam, F. (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Marine Biology 66, 109120.CrossRefGoogle Scholar
Goldman, J.C. and Gilbert, P.M. (1983) Kinetics of inorganic nitrogen uptake by phytoplankton. In Carpenter, E.J. and Capone, D.G. (eds) Nitrogen in marine environments. New York, NY: Academic Press, pp. 233274.CrossRefGoogle Scholar
Grasshoff, K. (1976) Methods of seawater analysis. Weinheim: Verlag Chemie, 307 pp.Google Scholar
Grob, C., Ulloa, O., Li, W.K.W., Alarcón, G., Fukasawa, M. and Watanabe, S. (2007) Picoplankton abundance and biomass across the eastern South Pacific Ocean along latitude 32.5°S. Marine Ecology Progress Series 332, 5362.CrossRefGoogle Scholar
Harris, R.J. (1975) A primer of multivariate statistics. New York, NY: Academic Press.Google Scholar
Jiao, N.Z., Yang, Y.H., Koshikawa, H. and Watanabe, M. (2002) Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquatic Microbial Ecology 30, 3748.CrossRefGoogle Scholar
Jochem, F.J. (2001) Morphology and DNA content of bacterioplankton in the northern Gulf of Mexico: analysis by epifluorescence microscopy and flow cytometry. Aquatic Microbial Ecology 25, 179194.CrossRefGoogle Scholar
Jochem, F.J. (2003) Photo- and heterotrophic pico- and nanoplankton in the Mississippi River Plume: distribution and grazing activity. Journal of Plankton Research 25, 12011214.CrossRefGoogle Scholar
Jochem, F.J., Lavrentyev, P.J. and First, M.R. (2004) Growth and grazing rates of bacteria groups with different apparent DNA content in the Gulf of Mexico. Marine Biology 145, 12131225.CrossRefGoogle Scholar
Justić, D., Rabalais, N.N., Turner, R.E. and Dortch, Q. (1995) Changes in nutrient structure of river dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine Coasal and Shelf Science 50, 339356.CrossRefGoogle Scholar
Kirchman, D.L., Kell, R.G., Simon, M. and Welschmeyer, N.A. (1993) Biomass and production of heterotrophic bacterioplankton in the oceanic subarctic Pacific. Deep-Sea Research I 40, 967988.CrossRefGoogle Scholar
Kjelleberg, S., Albertson, N., Flaerdh, K., Holmquist, L., Jouper-Jaan, A., Marouga, R., Oestling, J., Svenblad, B. and Weichart, D. (1993) How do nondifferentiating bacteria adapt to starvation? Antonie Leeuwenhoek 63, 333341.CrossRefGoogle ScholarPubMed
Kruskal, J.B. and Wish, M. (1978) Multidimensional scaling. Beverly Hills, CA: Sage.CrossRefGoogle Scholar
Leakey, R.J.G., Burkill, P.H. and Sleigh, M.A. (1994) A comparison of fixatives for the estimation of abundance and biovolume of marine planktonic ciliate populations. Journal of Plankton Research 16, 375389.CrossRefGoogle Scholar
Lee, S. and Fuhrman, J.A. (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Applied and Environmental Microbiology 53, 12981303.CrossRefGoogle ScholarPubMed
Li, W.K.W. (1998) Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnology and Oceanography 43, 17461753.CrossRefGoogle Scholar
Li, W.K.W., Subba Rao, D.V., Harrison, W.G., Smith, J.C., Cullen, J.J., Irwin, B. and Platt, T. (1983) Autotrophic picoplankton in the tropical ocean. Science 219, 292295.CrossRefGoogle ScholarPubMed
Li, W.K.W. and Harrison, W.G. (2001) Chlorophyll, bacteria and picophytoplankton in ecological provinces of the North Atlantic. Deep-Sea Research II 48, 22712293.CrossRefGoogle Scholar
Lindell, D. and Post, A.F. (1995) Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnology and Oceanography 40, 11301141.CrossRefGoogle Scholar
Llabres, M., Agustí, S., Alonso-Laita, P. and Herndl, G.J. (2010) Synechococcus and Prochlorococcus cell death induced by UV radiation and the penetration of lethal UVR in the Mediterranean Sea. Marine Ecology Progress Series 399, 2737.CrossRefGoogle Scholar
Longnecker, K., Sherr, B.F. and Sherr, E.B. (2005) Activity and phylogenetic diversity of bacterial cells with high and low nucleic acid content and electron transport system activity in an upwelling ecosystem. Applied and Environmental Microbiology 71, 77377749.CrossRefGoogle Scholar
Magazzù, G. and Decembrini, F. (1995) Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review. Aquatic Microbial Ecology 9, 97104.CrossRefGoogle Scholar
Marie, D., Brussaard, C., Partensky, F. and Vaulot, D. (1999) Flow cytometric analysis of phytoplankton, bacteria and viruses. In Current protocols in cytometry. New York, NY: John Wiley & Sons, pp. 11.11.111.11.15.Google Scholar
Marie, D., Partensky, F., Jacquet, S. and Vaulot, D. (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Applied and Environmental Microbiology 63, 186193.CrossRefGoogle ScholarPubMed
Massana, R., Balagué, V., Guillou, L. and Pedrós-Alió, C. (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiology Ecology 50, 231243.CrossRefGoogle Scholar
Massana, R., Unrein, F., Rodríguez-Martínez, R., Forn, I., Lefort, T., Pinhassi, J. and Not, F. (2009) Grazing rates and functional diversity of uncultured heterotrophic flagellates. ISME Journal 3, 588596.CrossRefGoogle ScholarPubMed
Mella-Flores, D., Mazard, S., Humily, F., Partensky, F., Mahe, F., Bariat, L., Courties, C., Marie, D., Ras, J., Mauriac, R., Jeanthon, C., Mahdi Bendif, E., Ostrowski, M., Scanlan, D.J. and Garczarek, L. (2011) Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences 8, 27852804.CrossRefGoogle Scholar
Morán, X.A.G., Calvo-Diaz, A. and Ducklow, H.W. (2010) Total and phytoplankton mediated bottom-up control of bacterioplankton change with temperature in NE Atlantic shelf waters. Aquatic Microbial Ecology 58, 229239.CrossRefGoogle Scholar
Murrell, M.C. and Lores, E.M. (2004) Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. Journal of Plankton Research 26, 371382.CrossRefGoogle Scholar
Noble, R.T. and Fuhrman, J.A. (1998) Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquatic Microbial Ecology 14, 113118.CrossRefGoogle Scholar
Olson, R.J., Chisholm, S.W., Zettler, E.Z., Altabet, M.A. and Dusenberry, J.A. (1990) Spatial and temporal distributions of prochlorophyte picoplankton in the North Atlantic Ocean. Deep-Sea Research 37, 10331051.CrossRefGoogle Scholar
Partensky, F., Blanchot, J. and Vaulot, D. (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bulletin de l‘Institut océanographique de Monaco, Numéro Spécial 19, 431449.Google Scholar
Pernthaler, J., Sattler, B., Šimek, K., Schwarzenbacher, A. and Psenner, R. (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquatic Microbial Ecology 10, 255263.CrossRefGoogle Scholar
Perry, M.J. and Eppley, R.W. (1981) Phosphate uptake by phytoplankton in the central North Pacific Ocean. Deep-Sea Research 28, 3949.CrossRefGoogle Scholar
Petersen, R. (1991) Carbon-14 uptake by picoplankton and total phytoplankton in eight New Zealand lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76, 631641.CrossRefGoogle Scholar
Phlips, E.J., Badylak, S. and Lynch, T.C. (1999) Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnology and Oceanography 44, 11661175.CrossRefGoogle Scholar
Piwosz, K. and Pernthaler, J. (2010) Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea. Environmental Microbiology 12, 364377.CrossRefGoogle ScholarPubMed
Piwosz, K., Wiktor, J.M., Niemi, A., Tatarek, A. and Michel, C. (2013) Mesoscale distribution and functional diversity of picoeukaryotes in the first-year sea ice of the Canadian Arctic. ISME Journal 7, 14611471.CrossRefGoogle ScholarPubMed
Pomeroy, L.R. and Deibel, D. (1986) Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 24, 499504.Google Scholar
Pomeroy, L.R., Wiebe, W.J., Deibel, D., Thompson, R.J., Rowe, G.T. and Pakulski, J.D. (1991) Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Marine Ecology Progress Series 75, 143159.CrossRefGoogle Scholar
Porter, K.G. and Feig, Y.S. (1980) The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25, 943948.CrossRefGoogle Scholar
Radić, T., Šilović, T., Šantić, D., Fuks, D. and Mičić, M. (2009) Preliminary flow cytometric analyses of phototrophic pico-and nanoplankton communities in the Northern Adriatic. Fresenius Environmental Bulletin 18, 715724.Google Scholar
Rhee, G.Y. (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. Journal of Phycology 9, 495506.CrossRefGoogle Scholar
Šantić, D., Krstulović, N., Šolić, M. and Kušpilić, G. (2011) Distribution of Synechococcus and Prochlorococcus in the central Adriatic Sea. Acta Adriatica 52, 101114.Google Scholar
Šantić, D., Krstulović, N., Šolić, M. and Kušpilić, G. (2012) HNA and LNA bacteria in relation to the activity of heterotrophic bacteria. Acta Adriatica 53, 2540.Google Scholar
Šantić, D., Krstulović, N., Šolić, M., Ordulj, M. and Kušpilić, G. (2013) Dynamics of prokaryotic picoplankton community in the central and southern Adriatic Sea (Croatia). Helgoland Marine Research 67, 471481.CrossRefGoogle Scholar
Scharek, R. and Latasa, M. (2007) Growth, grazing and carbon flux of high and low nucleic acid bacteria differ in surface and deep chlorophyll maximum layers in the NW Mediterranean Sea. Aquatic Microbial Ecology 46, 153161.CrossRefGoogle Scholar
Schlitzer, R. (2004) Export production in the equatorial and North Pacific derived from dissolved oxygen, nutrient and carbon data. Journal of Oceanography 60, 5362.CrossRefGoogle Scholar
Seber, G.A.F. (1984) Multivariate observations. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
Shalapyonok, A., Olson, R.J. and Shalapyonok, L.S. (2001) Arabian Sea phytoplankton during South West and Northeast Monsoons 1995: composition, size structure and biomass from individual cell properties measured by flow cytometry. Deep-Sea Research II 48, 12311261.CrossRefGoogle Scholar
Shapiro, S.S. and Wilk, M.B. (1965) An analysis of variance test for normality (complete samples). Biometrika 52, 591611.CrossRefGoogle Scholar
Šolić, M. and Krstulović, N. (1994) The role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Marine Ecology Progress Series 114, 219235.Google Scholar
Šolić, M. and Krstulović, N. (1995) Bacterial carbon flux through microbial loop in Kaštela Bay (Adriatic Sea). Ophelia 41, 345360.CrossRefGoogle Scholar
Šolić, M., Krstulović, N., Bojanić, N., Marasović, I. and Ninčević, Ž. (1998) Seasonal switching between relative importance of bottom-up and top-down control of bacterial and heterotrophic nanoflagellate abundance. Journal of the Marine Biological Association of the United Kingdom 78, 755766.CrossRefGoogle Scholar
Šolić, M., Krstulović, N., Kušpilić, G., Ninčević Gladan, Ž., Bojanić, N., Šestanović, S., Šantić, D. and Ordulj, M. (2010) Changes in microbial food web structure in response to changed environmental trophic status: a case study of the Vranjic Basin (Adriatic Sea). Marine Environmental Research 70, 239249.CrossRefGoogle ScholarPubMed
Šolić, M., Krstulović, N., Vilibić, I., Bojanić, N., Kušpilić, G., Šestanović, S., Šantić, D. and Ordulj, M. (2009) Variability in the bottom-up and top-down control of bacteria on trophic and temporal scale in the middle Adriatic Sea. Aquatic Microbial Ecology 58, 1529.CrossRefGoogle Scholar
Stockner, J.G. (1988) Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnology and Oceanography 33, 765775.CrossRefGoogle Scholar
UNEP/MAP (2003) Riverine transport of sediments and pollutants to the Mediterranean Sea. MAP Technical Series, 141, Athens 1111.Google Scholar
Unrein, F., Gasol, J.M., Not, F., Forn, I. and Massana, R. (2014) Mixotrophic haptophytes are key bacterial grazers in oligotrophic coastal waters. ISME Journal 8, 164176.CrossRefGoogle ScholarPubMed
Utermöhl, H. (1958) Zur Vervollkommnung der quantitativen Phytoplankton – Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9, 137.Google Scholar
Vidjak, O., Bojanić, N., Kušpilić, G., Ninčević Gladan, Ž. and Tičina, V. (2007) Zooplankton community and hydrographical properties of the Neretva Channel (eastern Adriatic Sea). Helgoland Marine Research 61, 267282.CrossRefGoogle Scholar
Vincent, W.F. (2000) Cyanobacterial dominance in the polar regions. In Whitton, B. and Potts, M. (eds) The ecology of cyanobacteria: their diversity in time and space. Dordrecht: Kluwer Academic Publishers, pp. 321340.Google Scholar
Vörös, L., Callieri, C., Balogh, K.V. and Bertoni, R. (1998) Freshwater picocyanobacteria along trophic gradient and light quality range. In Alvarez-Cobelas, M., Reynolds, C.S., Sanchez-Castillo, P. and Kristiansen, J. (eds) Phytoplankton and trophic gradients. Hydrobiologia 369/370, 117125.CrossRefGoogle Scholar
Vörös, L., Gulyas, P. and Nemeth, J. (1991) Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Internationale Revue der gesamten Hydrobiologie und Hydrographie 76, 617629.CrossRefGoogle Scholar
Wang, K., Wommack, K.E. and Chen, F. (2011) Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Applied and Environmental Microbiology 77, 74597468.CrossRefGoogle ScholarPubMed
Wood, A.M., Horan, P.K., Muirhead, K., Phinney, D.A., Yentsch, C.M. and Waterbury, J.B. (1985) Discrimination between types of pigments in marine Synechococcus spp. by scanning spectroscopy, epifluorescence microscopy, and flow cytometry. Limnology and Oceanography 30, 13031315.CrossRefGoogle Scholar
Zhang, Y., Jiao, N.Z. and Hong, N. (2008) Comparative study of picoplankton biomass and community structure in different provinces from subarctic to subtropical oceans. Deep-Sea Research II 55, 16051614.CrossRefGoogle Scholar
Zubkov, M.V., Sleigh, M.A., Burkill, P.H. and Leakey, R.J.G. (2000) Picoplankton community structure on the Atlantic Meridional Transect: a comparison between seasons. Progress in Oceanography 45, 369386.CrossRefGoogle Scholar
Zubkov, M.V., Fuchs, B.M., Burkill, P.H. and Amann, R. (2001) Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Applied and Environmental Microbiology 67, 52105218.CrossRefGoogle ScholarPubMed