Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T01:07:26.766Z Has data issue: false hasContentIssue false

Survival of Anaerobic Periods By Two Intertidal Polychaetes, Arenicola Marina (L.) and Owenia Fusiformis Delle Chiaje

Published online by Cambridge University Press:  11 May 2009

R. Phillips Dales
Affiliation:
Bedford College, University of London

Extract

Measurements of glycogen in the body wall of Arenicola indicate that glycogen is consumed during anaerobic conditions. Estimations of lactate and pyruvate show that neither is accumulated, accounting for the absence of an oxygen debt previously found by other workers, and suggesting that glycogen breakdown leads to other acids. In Owenia most of the glycogen is stored in coelomic cells and these deposits are not drawn upon during anaerobic periods, yet this species can survive long periods without oxygen, apparently by becoming quiescent. Oil content in both species has also been measured, and was found not to fall under anaerobic conditions. It is suggested that survival of anaerobic periods may be mainly due to an ability to suspend normal activity.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1958

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. R. 1946. The histochemical recognition of lipine. Quart J. micr. Sci. Vol. 87, pp. 441–70.Google ScholarPubMed
Barcroft, J. & Barcroft, H. 1924. The blood pigment of Arenicola. Proc. roy. Soc. B, Vol. 96, pp. 2842.Google Scholar
Barker, S. B. & Summerson, W. H. 1941. The colorimetric determination of lactic acid in biological material J. biol. Chem., Vol. 138, pp. 535–54.Google Scholar
Borden, M. A. 1931. A study of the respiration and of the function of haemoglobin in Planorbis corneus and Arenicola marina. J. mar. biol. Ass. U.K., Vol. 17, pp. 7O938.CrossRefGoogle Scholar
Brand, T. F. Von 1927. Stoffbestand und Ernährung einiger Polychäten und anderer mariner Würmer. Z. vergl. Physiol. Bd. 5, pp. 643–98.CrossRefGoogle Scholar
Brand, T. F. Von 1946. Anaerobiosis in Invertebrates. Biodynamica Monographs No. 4, 328 pp.Google Scholar
Casselman, W. G. B. 1954. Acetylated sudan black Bas a more specific histochemical reagent for lipides. Quart. J. micr. Sci. Vol. 95, pp. 321–2.Google Scholar
Chiffelle, T. L. & Putt, F. A. 1951. Propylene and ethylene glycol as solvents for sudan IV and Sudan black B. Stain Tech. Vol. 26, pp. 51–6.CrossRefGoogle ScholarPubMed
Dales, R. P. 1957a. Preliminary observations on the role of the coelomic cells in food storage and transport in certain polychaetes. J. mar. biol. Ass. U.K., Vol. 36, pp. 91110.CrossRefGoogle Scholar
Dales, R. P. 1957b. The feeding mechanism and morphology of the gut of Owenia fusiformis delle Chiaje. J. mar. biol. Ass. U.K., Vol. 36, pp. 81–9.CrossRefGoogle Scholar
Dam, L. Van 1938. On the Utilisation of Oxygen and Regulation of Breathing in some Aquatic Animals. Gröningen, 143 pp.Google Scholar
Glick, D. 1955. Methods of Biochemical Analysis Vol. 2, 470 pp. New York: Interscience.CrossRefGoogle Scholar
Hagedorn, H. C. & Jensen, N. 1923. Zur Mikrobestimmung des Blutzuckers mittels Ferricyanid. Biochem. Z. Bd. 135, pp. 4658.Google Scholar
Hecht, F. 1932. Der chemische Einfluss organischer Zersetzungsstoffe auf das Benthos, dargelegt an Untersuchungen mit marinen Polychaeten, insbesondere Arenicola marina L. Senckenbergiana Bd. 14, pp. 199220.Google Scholar
Jacubowa, L. & Malm, E. 1931. Die Beziehungen einiger Benthos-Formen des Schwarzen Meeres zum Medium. Biol. Zbl. Bd. 51, pp. 105–16.Google Scholar
Jones, J. D. 1954. Observations on the respiratory physiology and on the haemoglobin of the polychaete genus Nephthys with special reference to N. hombergii (Aud. et M.-Edw.). J. exp. Biol., Vol. 32, pp. 110–25.Google Scholar
Linke, O. 1939. Die Biota des Jadebusenwattes. Wiss. Meeresuntersuch., Abt. Helgoland, Bd. 1, pp. 201348.CrossRefGoogle Scholar
Lu, G. D. 1939. Studies on the metabolism of pyruvic acid in normal and vitamin B-deficient states. I. A rapid, specific and sensitive method for the estimation of blood pyruvate. Biochem. J. Vol. 33, pp. 249–54.CrossRefGoogle Scholar
Packard, W. H. 1905. On resistance to lack of oxygen and on a method of increasing this resistance. Amer.J. Physiol. Vol. 15, pp. 3041.CrossRefGoogle Scholar
Smyth, J. D. & Hopkins, C. A. 1948. Ester wax as a medium for embedding tissue for the histological demonstration of glycogen. Quart. J. micr. Sci., Vol. 89, pp. 431–5.Google ScholarPubMed
Thamdrup, H. M. 1935. Beiträge zur Ökologie der Wattenfauna auf experimenteller Grundlage. Medd. Komm. Havundersog., Kbh., Fiskeri, Bd. 10, pp. 1125.Google Scholar
Wells, G. P. 1945. The mode of life of Arenicola marina L. J. mar. biol. Ass. U.K., Vol. 26, pp. 170207.CrossRefGoogle Scholar
Wells, G. P. 1949. Respiratory movements of Arenicola marina L.: Intermittent irrigation of the tube, and intermittent aerial respiration. J. mar. biol. Ass. U.K., Vol. 28, pp. 447–64.CrossRefGoogle Scholar
Wolvekamp, H. P. & Vreede, M. C. 1941. On the gas binding properties of the blood of the lugworm (Arenicola marina L.). Arch, néerl. Physiol. T. 25, pp. 265–76.Google Scholar