Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-19T03:39:00.707Z Has data issue: false hasContentIssue false

The Swimming Rhythm of Bathyporeia Pilosa [Crustacea: Amphipoda]

Published online by Cambridge University Press:  11 May 2009

G. S. Preece
Affiliation:
Department of Zoology, University Collegeof Wales, Aberystwyth

Extract

High- and low-shore populations of Bathyporeia pilosa LindstrÖm, kept in the laboratory under natural day-night illumination and constant dark conditions, show distinct swimming rhythms of tidal frequency (12–4 h) with activity maxima on the early ebb tide. A diurnal component is evident, activity during thenight being greater than during the day. The tidal rhythm deteriorates under laboratory conditions, but swimming activity recurs after a semi-lunar period. Under natural illumination, both populations show a night tide swimming rhythm of semi-lunar frequency, activity occurring mainly over the 'falling' spring tides. Plankton sampling on night tides over the area of the beach occupied by high-shore B. pilosa shows that the animals emerge and swim on ebb tides which are in phase with darkness. The importance of exogenous factors such as wave action, pressure, temperature and light is discussed. Ecological implications and the possible function of the swimming rhythm are considered.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bainbridge, R.J 1961. Migrations. In The Physiology of Crustacea, Vol. 2 (ed. T. H.Walterman), pp. 431–63. New Yorkand London: Academic Press.Google Scholar
Banse, K. 1964. On the vertical distribution of zooplankton in the sea. In Progress in Oceanography, Vol. 2 (ed. M. Sears), pp. 55125. New York: Pergamon Press.Google Scholar
Blaxter, J. H. S. 1968. Light intensity, vision and feeding in young plaice. J. exp. mar. Biol. Ecol., Vol. 2, pp. 293307.CrossRefGoogle Scholar
Carlisle, D. B. & Pitman, W. J. 1961. Diapause, neurosecretion and hormones incopepoda. Nature, Lond., Vol. 190, p.287.Google Scholar
Colman, J. S. & Segrove, F. 1955. The tidal plankton over Stoupe Beck Sands, Robin Hood's Bay (Yorkshire, North Riding). J. Anim. Ecol., Vol. 24, pp. 445–62.CrossRefGoogle Scholar
Enright, J. T. 1961. Pressure sensitivity of an amphipod. Science, N.Y., Vol. 133, pp. 758–60.Google Scholar
Enright, J. T. 1962. Responses of an amphipod to pressure changes. Comp. Biochem. Physiol., Vol. 7, pp. 131–45CrossRefGoogle Scholar
Enright, J. T. 1963. The tidal rhythm of activity of a sand beach amphipod. Z. Vergl. Physiol., Vol. 46, pp. 276313.Google Scholar
Enright, J. T. 1965. Entrainment of a tidal rhythm.Science, N.Y., Vol. 147, pp. 864–6.CrossRefGoogle ScholarPubMed
Fincham, A. A. 1970a. Amphipods in the surf plankton. J. mar. biol. Ass. U.K., Vol. 50, pp. 177–98.CrossRefGoogle Scholar
Fincham, A. A. 1970b. Rhythmic behaviour of the intertidal amphipod Bathyporeia pelagica. J. mar. biol. Ass. U.K., Vol. 50, pp. 1057–68.CrossRefGoogle Scholar
Fish, J. D. & Preece, G. S. 1970. The annualreproductive patterns of Bathyporeia pilosa and Bathyporeia pelagica (Crustacea: Amphipoda). J. mar. biol. Ass. U.K., Vol. 50, pp. 475–88.CrossRefGoogle Scholar
Harris, J. E. 1963. The role of endogenous rhythms in vertical migration. J. mar. biol. Ass. U.K., Vol. 43, pp. 153–66.CrossRefGoogle Scholar
Jansson, B. O. & KÃllander, C 1968. On the diurnal activity of some littoral peracarid crustaceans in the Baltic Sea. J. exp. mar. Biol. Ecol., Vol. 2, pp. 2436.CrossRefGoogle Scholar
Jones, D. A. & Naylor, E. 1970. The swimmingrhythm of the sand beach isopod. Eurydice pulchra. J. exp. mar. Biol. Ecol., Vol. 4, pp. 188–99.CrossRefGoogle Scholar
Knight-Jones, E. W. & Morgan, E. 1966. Responses of some marine animals to changes in hydrostatic pressure. Oceanogr. mar. Biol. Vol. 4, pp. 267–99.Google Scholar
Lincoln, R. J. 1970. A laboratory investigation into theeffects of hydrostatic pressure on the vertical migration of planktonic Crustacea. Mar. Biol., Vol. 6, pp. 511.CrossRefGoogle Scholar
Morgan, E. 1965. The activity rhythm of the amphipod Corophium volutator Pallas and its possible relationship to changes in hydrostatic pressure associated with the tides. J. Anim. Ecol., Vol. 34, pp. 731–46.CrossRefGoogle Scholar
Naylor, E. 1958. Tidal and diurnal rhythms of locomotoryactivity in Carcinus maenas (L.). J. exp. Biol., Vol. 35, pp. 602–10.Google Scholar
Naylor, E. & Williams, B. G. 1968. Effects of eyestalk removal on rhythmic locomotory activity in Carcinus. J. exp. Biol., Vol. 49, pp. 107–16.CrossRefGoogle Scholar
Salvat, B. 1967. La macrofaune carcinologigue endogee des sediments meubles intertidaux (Tanaidaces, Isopodes et Amphipodes), ethologie, bionomie et cycle biologique. Mem. Mus. natn. Hist, nat., Paris., Ser. A, Zoologie, T. 45, pp. 139–63.Google Scholar
Sameoto, D. D. 1969. Comparative ecology, life histories, and behaviour of intertidal sand burrowing amphipods (Crustacea: Haustoriidae) at Cape Cod. J. Fish. Res. Bd Can., Vol. 26, pp. 361–88.CrossRefGoogle Scholar
Thorson, G. 1964. Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia, Vol. 1, pp. 167208.CrossRefGoogle Scholar
Watkin, E. E. 1938. A revision of the Amphipod genus Bathyporeia Lindstrom. J. mar. biol. Ass. U.K., Vol. 23, pp. 211–36.CrossRefGoogle Scholar
Watkin, E. E. 1939. The pelagic phase in the life history of the Amphipod genus Bathyporeia. J. mar. biol. Ass. U.K., Vol. 23, pp. 467–81.CrossRefGoogle Scholar
Wildish, D. J. 1970. Locomotory activity rhythms in somelittoral Orchestia (Crustacea: Amphipoda). J. mar. biol. Ass. U.K., Vol. 50, pp. 241–52.CrossRefGoogle Scholar