Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T14:08:37.115Z Has data issue: false hasContentIssue false

Temporal patterns of phytoplankton assemblages, size spectra and diversity during the wane of a Phaeocystis globosa spring bloom in hydrologically contrasted coastal waters

Published online by Cambridge University Press:  25 June 2008

Mathilde Schapira*
Affiliation:
School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia
Dorothee Vincent
Affiliation:
Laboratoire Ecosystèmes Littoraux et Côtiers, Maison de la Recherche en Environnement Naturel, CNRS FRE 2816 ELICO, Université du Littoral-Côte d'Opale, 32 Avenue Foch, 62930 Wimereux, France
Valerie Gentilhomme
Affiliation:
Laboratoire Ecosystèmes Littoraux et Côtiers, Station Marine de Wimereux, CNRS FRE 2816 ELICO, Université des Sciences et Technologies de Lille 1, 28 Avenue Foch BP-80, 62930 Wimereux, France
Laurent Seuront
Affiliation:
School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide SA 5001, Australia Laboratoire Ecosystèmes Littoraux et Côtiers, Station Marine de Wimereux, CNRS FRE 2816 ELICO, Université des Sciences et Technologies de Lille 1, 28 Avenue Foch BP-80, 62930 Wimereux, France South Australian Research and Development Institute, Aquatic Sciences, West Beach, SA 5022, Australia
*
Correspondence should be addressed to: Mathilde Schapira School of Biological Sciences, Flinders UniversityGPO Box 2100, Adelaide SA 5001, Australia email: mathilde.schapira@flinders.edu.au

Abstract

The space–time dynamic of phytoplankton diversity and succession was investigated during the wane of a Phaeocystis globosa spring bloom in four distinct hydrological sub-systems of the eastern English Channel. Nutrients, chlorophyll-a concentrations, and phytoplankton composition, standing stocks, size spectra and diversity were monitored during three key periods in 2003: late spring, early summer and summer. Two consecutive diatom assemblages were observed, respectively dominated by: (i) small colonial species (<100 μm; Melosira sp., Diploneis sp. and Navicula transitans) in April; and (ii) large fine-walled cells (>200 μm; Guinardia striata and Rhizosolenia imbricata) in May and July. This shift in diatom composition appeared to be related to the potentially limitating silicic acid in early summer. Specific phytoplankton assemblages identified in distinct water masses have evolved from a mature/senescent community towards a relatively homogeneous aestival structure of dominant species that might have been triggered by the wane of the P. globosa bloom. Our results also identified a strong heterogeneity in the distribution of secondary species between distinct water masses during the summer period, suggesting that the magnitude of the observed patterns was intrinsically related to the hydrological properties prevailing in each sub-system. The identification of distinct temporal patterns in phytoplankton species diversity and succession following the wane of a spring bloom at relatively small spatial scales (i.e. <10 km) is discussed in the framework of P. globosa blooms in particular and phytoplankton blooms in general and is suggested to have potentially strong consequences on food web dynamics and the carbon cycle in coastal ecosystems.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armstrong, R.A. (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the ‘control rod’ model of plankton interaction. Deep-Sea Research II 50, 28952916.CrossRefGoogle Scholar
Auby, I., Trut, G., D'Amico, F. and Beliaeff, B. (1999) Réseau hydrologique du Bassin d'Arcachon. Synthèse des résultats 1988–1997. Rapport interne IFREMER/DEL, Arcachon, France.Google Scholar
Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10, 257263.CrossRefGoogle Scholar
Badylak, S. and Phlips, E.J. (2004) Spatial and temporal patterns of phytoplankton composition in a subtropical coastal lagoon, the Indian River Lagoon, Florida, USA. Journal of Plankton Research 26, 12291247.CrossRefGoogle Scholar
Barbiero, R.P., James, W.F. and Barko, J.W. (1999) The effects of disturbance events on phytoplankton community structure in a small temperate reservoir. Freshwater Biology 42, 503512.CrossRefGoogle Scholar
Bendschneider, K. and Robinson, R.J. (1952) A new spectrophotometric method for determination of nitrite in the sea water. Journal of Marine Research 2, 8796.Google Scholar
Bode, A., Alvarez-Ossorio, M.T., Gonzalez, N., Lorenzo, J., Rodriguez, C., Varela, M. and Varela, M.M. (2005) Seasonal variability of plankton blooms in the Ria de Ferrol (NW Spain): II. Plankton abundance, composition and biomass. Estuarine, Coastal and Shelf Science 63, 285300.CrossRefGoogle Scholar
Breton, E., Brunet, C., Sautour, B. and Brylinski, J.M. (2000) Annual variations of phytoplankton biomass in the Eastern English Channel: comparison by pigment signatures and microscopic counts. Journal of Plankton Research 22, 14231440.CrossRefGoogle Scholar
Brunet, C., Brylinski, J.M. and Frontier, S. (1992) Productivity, photosynthetic pigments and hydrology in the coastal front of the Eastern English Channel. Journal of Plankton Research 14, 15411552.CrossRefGoogle Scholar
Brunet, C., Brylinski, J.M. and Lemoine, Y. (1993) In situ variations of the xanthophylls diatoxanthin and diadinoxanthin: photoadaptation and relationships with a hydrodynamical system in the Eastern English Channel. Marine Ecology Progress Series 102, 6977.CrossRefGoogle Scholar
Brunet, C., Davoult, D. and Casotti, R. (1996) Physiological reactions to a change in light regime in cultured Skeletonema costatum (Bacilloriophyta): implications for estimation of phytoplankton biomass. Hydrobiologia 333, 8794.CrossRefGoogle Scholar
Brylinski, J.M., Dupont, J. and Bentley, D. (1984) Conditions hydrologiques au large du Cap Gris-Nez (France): premiers résultats. Oceanologica Acta 7, 315322.Google Scholar
Brylinski, J.M. and Lagadeuc, Y. (1990) L'interface eaux côtières/eaux du large dans le Pas de Calais (côte française): une zone frontale. Comptes Rendus de l'Académie des Sciences 311 série II, 535540.Google Scholar
Brylinski, J.M., Lagadeuc, Y., Gentilhomme, V., Dupont, J.P., Lafite, R., Dupeuple, P.A., Huault, M.F., Auger, Y., Puskaric, E., Wartel, M. and Cabioch, L. (1991) Le fleuve côtier: un phénomène hydrologique important en Manche Orientale. Exemple du Pas de Calais. Oceanologica Acta 11, 197203.Google Scholar
Brylinski, J.M., Brunet, C., Bentley, D., Thoumelin, G. and Hilde, D. (1996) Hydrography and phytoplankton biomass in the Eastern English Channel in spring 1992. Estuarine, Coastal and Shelf Science 43, 507519.CrossRefGoogle Scholar
Brzezinski, M.A. (1985) The Si:N:P ratio of marine diatoms: interspecific variability and the effect of some environmental variables. Journal of Phycology 21, 347357.CrossRefGoogle Scholar
Burd, A.B. and Jackson, G.A. (2002) Modelling steady-state particle size spectra. Environmental Sciences and Technology 36, 323327.CrossRefGoogle ScholarPubMed
Cadée, G.C. and Hegeman, J. (1986) Seasonal and annual variations in Phaeocystis pouchetii (Haptophyceae) in the westernmost inlet of the Wadden Sea during the 1973 to 1985 period. Netherland Journal of Sea Research 20, 2936.CrossRefGoogle Scholar
Chang, A.T. (1980) Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth and carbon/chlorophyll a ratio. Journal of Phycology 16, 428432.CrossRefGoogle Scholar
Chang, F.H., Zeldis, J., Gall, M. and Hall, J. (2003) Seasonal and spatial variation of phytoplankton assemblages, biomass and cell size from spring to summer across the north-eastern New Zealand continental shelf. Journal of Plankton Research 25, 737758.CrossRefGoogle Scholar
Chisholm, S.W. (1992) Phytoplankton size. In Falkowski, P.G. and Woodhead, A.D. (eds) Primary productivity and biogeochemical cycles in the sea. New York: Plenum Press, pp. 213237.CrossRefGoogle Scholar
Cloern, J.E. and Dufford, R. (2005) Phytoplankton community ecology: principles applied in San Francisco Bay. Marine Ecology Progress Series 285, 1128.CrossRefGoogle Scholar
Cullen, J.J., Franks, P.S., Karl, D.M. and Longhurst, A. (2002) Physical influences on marine ecosystem dynamics. In Robinson, A.R., McCarthy, J.J. and Rothschild, B.J. (eds) The sea, Vol. 12. New York: John Wiley & Sons, pp. 297336.Google Scholar
Del Amo, Y., Le Pape, O., Tréguer, P., Quéguiner, P., Ménesguen, A. and Aminot, A. (1997a) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. I. Seasonal evolution of nutrient limitation for the diatom-dominated phytoplankton in the Bay of Brest (France). Marine Ecology Progress Series 161, 213224.CrossRefGoogle Scholar
Del Amo, Y., Quéguiner, B., Tréguer, P., Breton, H. and Lampert, L. (1997b) Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France). Marine Ecology Progress Series 161, 225237.CrossRefGoogle Scholar
Duarte, C.M., Agusti, S. and Kalff, J. (2000) Particulate light absorption and the prediction of phytoplankton biomass and planktonic metabolism in Northeastern Spanish aquatic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 57, 2533.CrossRefGoogle Scholar
Dupont, J.P., Lafite, R., Huault, M.F., Lamboy, M., Brylinski, J.M. and Guéguéniat, P. (1991) La dynamique des masses d'eau et matières en suspension en Manche Orientale. Oceanologica Acta 11, 177186.Google Scholar
Dupuy, C., Vaquer, A., Lam-Hoai, T., Rougier, C., Mazouni, N., Lautier, J., Collos, Y. and Le Gall, S. (2000) Feeding rate of the oyster Crassostrea gigas in a natural plankton community on the Mediterranean Thau Lagoon. Marine Ecology Progress Series 205, 171184.CrossRefGoogle Scholar
Estrada, M., Henriksen, P., Gasol, J.M.Casamayor, E.O. and Pedros-Alio, C. (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by mircoscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiology and Ecology 49, 281293.CrossRefGoogle Scholar
Finkel, Z.V. (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Limnology and Oceanography 46, 1, 8694.CrossRefGoogle Scholar
Finkel, Z.V., Irwin, A.J. and Schofield, O. (2004) Resource limitation alter the 3/4 size scaling of metabolic rates in phytoplankton. Marine Ecology Progress Series 273, 269279.CrossRefGoogle Scholar
Frontier, S. (1976) Utilisation des diagrammes rangs-fréquences dans l'analyse des écosystèmes. Journal de la Recherche Océanographique 1, 3548.Google Scholar
Frontier, S. (1985) Diversity and structure in aquatic ecosystems. Oceanography and Marine Biology: an Annual Review 23, 253312.Google Scholar
Gentilhomme, V. and Lizon, F. (1998) Seasonal cycle of nitrogen and phytoplankton biomass in a well-mixed coastal system (Eastern English Channel). Hydrobiologia 361, 191199.CrossRefGoogle Scholar
Gieskes, W.W.C. and Kraay, G.W. (1975) The phytoplankton spring bloom in Dutch coastal waters of the North Sea. Netherland Journal of Sea Research 9, 166196.CrossRefGoogle Scholar
Grabemann, I. and Krause, G. (2001) On different time scales of suspended matter dynamics in the Weser estuary. Estuaries 24, 688698.CrossRefGoogle Scholar
Hamm, C.E. (2000) Architecture, ecology and biogeochemistry of Phaeocystis colonies. Journal of Sea Research 43, 307315.CrossRefGoogle Scholar
Harris, G.P. (1978) Photosynthesis, productivity and growth; the physiological ecology of phytoplankton. Ergebneim Limnology 10, 1171.Google Scholar
Hasle, G.R., Syversten, E.E., Steidinger, K.A., Throndsen, J. and Heimdal, B.R. (1997) Identifying marine phytoplankton. St Petersburg, Russia and Florida, USA: CRT.Google Scholar
Hillebrand, H., Dürselen, C.D., Kirschtel, D., Pollingher, D. and Zohary, T. (1999) Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403424.CrossRefGoogle Scholar
Huault, M.F., Lafite, R. and Dupont, J.P. (1994) Diatoms as particulate tracers in the water column in the Eastern English Channel. Netherland Journal of Sea Research 33, 4756.CrossRefGoogle Scholar
Irwin, A.J., Finkel, Z.V., Schofield, O.M.E. and Falkowski, P.G. (2006) Scaling-up from nutrient physiology to the size structure of phytoplankton communities. Journal of Plankton Research, 28, 5, 459471.CrossRefGoogle Scholar
Koroleff, F. (1969) Direct determination of ammonia in natural waters as indophenol blue. International Council for the Exploration of the Sea 9, 16.Google Scholar
Lagadeuc, Y., Brylinski, J.M. and Aelbrecht, D. (1997) Temporal variability of the vertical stratification of a front in a tidal region of freshwater influence (ROFI) system. Journal of Marine Research 12, 147155.Google Scholar
Lamy, D., Artigas, L.F., Jauzein, C., Lizon, F. and Cornille, V. (2006) Coastal bacterial viability and production in the eastern English Channel: a case study during a Phaeocystis globosa bloom. Journal of Sea Research 56, 227238.CrossRefGoogle Scholar
Lancelot, C. (1987) Phaeocystis blooms and nutrient enrichment in the continental coastal zones of the North Sea. Ambiology 16, 3846.Google Scholar
Lancelot, C. (1995) The mucilage phenomenon in the continental coastal waters of the North Sea. The Science of the Total Environment 165, 83102.CrossRefGoogle Scholar
Lancelot, C. (1998) Autoecology in the marine haptophyte Phaeocystis sp. In Anderson, D.M., Cembella, A.D. and Hallegraeff, G. (eds) Physiological ecology of harmful algal blooms. Berlin, Heidelberg: Springer-Verlag, pp. 209224.Google Scholar
Lancelot, C., Wassemann, P. and Barth, H. (1994) Ecology of Phaeocystis-dominated ecosystems. Journal of Marine Systems 5, 14.CrossRefGoogle Scholar
Le Borgne, R. (1986) The release of soluble end products of metabolism. In Corner, E.D. and O'Hara, S.C.M. (eds) The biological chemistry of marine copepods. New York: Clarendon Press, pp. 109164.Google Scholar
Legendre, P. and Legendre, L. (1998) Numerical ecology. 2nd English edition. Amsterdam: Elsevier Science.Google Scholar
LeRoi, J.M. and Hallegraeff, G.M. (2006) Scale-bearing nanoflagellates from Southern Tasmania coastal waters, Australia. II. Species of Chrysophyceae (Chrysophyta), Prymnesiophyceae (Haptophyta, excluding Chrysochromulina) and Prasinophyceae (Chlorophyta). Botanica Marina 49, 213235.CrossRefGoogle Scholar
Li, W.K.W. (2002) Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419, 154157.CrossRefGoogle ScholarPubMed
Malone, T.C. (1992) Effects of water column processes on dissolved oxygen, nutrients, phytoplankton and zooplankton. In Smith, D.E., Leffler, M. and Mackiernan, G. (eds) Oxygen dynamics in the Chesapeake Bay. A synthesis of recent research. College Park, MD: Maryland Sea Grant, pp. 61112.Google Scholar
Margalef, R. (1958) Temporal succession and spatial heterogeneity in plankton. In Buzzati-Traverso, A.A. (ed.) Perspectives in marine biology. Berkeley: University of California Press, pp. 323349.Google Scholar
Margalef, R. (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1, 493509.Google Scholar
Menden-Deuer, S.E., Lessard, J. and Satterberg, J. (2001) Effect of preservation on dinoflagellates and diatom cell volume and consequences for carbon biomass predictions. Marine Ecology Progress Series 222, 4150.CrossRefGoogle Scholar
Menden-Deuer, S.E. and Lessard, E.J. (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45, 569579.CrossRefGoogle Scholar
Mullin, J.B. and Riley, J.P. (1955) The colorimetric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta 12, 162176.CrossRefGoogle Scholar
Murphy, J. and Riley, J.P. (1962) A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27, 3136.CrossRefGoogle Scholar
Muylaert, K., Gonzales, R., Franck, M., Lionard, M., Van der Zee, C., Cattrijsse, A., Sabbe, K., Chou, L. and Vyverman, W. (2006) Spatial variation in phytoplankton dynamics in the Belgian coastal zone of the North Sea studied by microscopy, HPLC-CHEMTAX and underway fluorescence recordings. Journal of Sea Research 55, 253265.CrossRefGoogle Scholar
Paulmier, G. (1997) Atlas des Diatomophycées des côtes françaises et des aires océaniques adjacentes. IFREMER–DRV–RH–RST, 94. 14, 187 pp.Google Scholar
Peperzak, L. (2002) The wax and the wane of Phaeocystis globosa blooms. PhD thesis. University Rijksuniversiteit Groningen, The Netherlands.Google Scholar
Pielou, E.C. (1966) Species-diversity and pattern-diversity in the study of ecological succession. Journal of Theoretical Biology 10, 370383.CrossRefGoogle Scholar
Pingree, R.D. and Griffiths, D. (1980) Currents driven by a steady uniform wind stress on the shelf seas around the British Isles. Oceanologica Acta 3, 227236.Google Scholar
Redfield, A.C., Ketchum, B.H. and Richards, F.A. (1963) The influence of organisms on composition of seawater. The Sea 2, 2677.Google Scholar
Rees, A.P., Joint, I. and Donald, K.M. (1999) Early spring bloom phytoplankton–nutrient dynamics at the Celtic Sea Shelf Edge. Deep-Sea Research II 46, 483510.CrossRefGoogle Scholar
Riou, S.A. (1999) Cycle de l'azote à l'interface eau–sédiment dans le Bassin d'Arcachon: rôle des bactéries dans les processus de pertes en azote (nitrification–dénitrification). PhD thesis. Université de Bordeaux I, France.Google Scholar
Rousseau, V. (2000) Dynamics of Phaeocystis and diatoms blooms in the eutrophicated coastal waters of the Southern Bight of the North Sea. PhD thesis. Université Libre de Bruxelles, Belgium.Google Scholar
Rousseau, V., Becquevort, S., Parent, J.Y., Gasparini, S., Daro, N., Tackx, M. and Lancelot, C. (2000) Trophic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies. Journal of Sea Research 43, 357372.CrossRefGoogle Scholar
Rousseau, V., Leynaert, A., Daoud, N. and Lancelot, C. (2002) Diatom succession, silicification and availability in Belgian coastal waters (southern North Sea). Marine Ecology Progress Series 236, 6173.CrossRefGoogle Scholar
Rousseau, V., Vaulot, D., Casotti, R., Cariou, V., Lenz, J., Gunkel, J. and Baumann, M.E.M. (1994) The life cycle of Phaeocystis (Prymnesiophyceae): evidence and hypotheses. Journal of Marine Systems 5, 2339.CrossRefGoogle Scholar
Salomon, J.C. and Breton, M. (1991) An atlas of long-term currents in the Channel. Oceanologica Acta 16, 449455.Google Scholar
Schapira, M. (2005) Space and time dynamic of Phaeocystis globosa in the eastern English channel: impact of turbulence and sporadic nutrients inputs. PhD thesis. Université des Sciences et Techniques de Lille, France.Google Scholar
Seuront, L. (2005) Hydrodynamical and tidal controls of small-scale phytoplankton patchiness. Marine Ecology Progress Series 302, 93101.CrossRefGoogle Scholar
Seuront, L. and Schmitt, F.G. (2005) Multiscaling statistical procedures for the exploration of biophysical couplings in intermittent turbulence. Part II. Applications. Deep-Sea Research II 52, 13251343.CrossRefGoogle Scholar
Seuront, L., Vincent, D. and Mitchell, J.G. (2006) Biologically-induced modification of seawater viscosity in the Eastern English Channel during a Phaeocystis globosa spring bloom. Journal of Marine Systems 61, 118133.CrossRefGoogle Scholar
Seymour, J.R., Mitchell, J.R. and Seuront, L. (2004) Microscale heterogeneity in the activity of coastal bacterioplankton communities. Aquatic Microbiology and Ecology 35, 116.CrossRefGoogle Scholar
Shannon, C.E. and Weaver, W. (1963) The mathematical concept of communication. Urbana: University of Illinois Press.Google Scholar
Sin, Y., Wetzel, R.L. and Anderson, I.C. (2000) Seasonal variations of size-fractionated phytoplankton along the salinity gradient in the York River estuary, Virginia (USA). Journal of Plankton Research 22, 10, 19451960.CrossRefGoogle Scholar
Sournia, A., Birrien, J.L., Douvillé, J.L., Klein, B. and Viollier, M. (1987) A daily study of diatom spring bloom at Roscoff (France) in 1985. I. The spring bloom within the annual cycle. Estuarine, Coastal and Shelf Science 25, 355367.CrossRefGoogle Scholar
Stelfox-Widdicombe, C.E., Archer, S.D., Burkill, P.H. and Stefels, J. (2004) Microzooplankton grazing in Phaeocystis and diatom-dominated waters in the southern North Sea in spring. Journal of Sea Research 51, 3751.CrossRefGoogle Scholar
Stemmann, L., Jackson, G.A. and Ianson, D. (2004) A vertical model of particles size distributions and fluxes in the midwater columns that includes biological and physical processes. I. Model formulation. Deep-Sea Research I 51, 865884.CrossRefGoogle Scholar
Stolte, W., McCollin, T.Noordeloos, A.M.M. and Riegman, R. (1994) Effect of nitrogen source on the size distribution within marine phytoplankton populations. Journal of Experimental Marine Biology and Ecology 184, 8397.CrossRefGoogle Scholar
Stolte, W. and Riegman, R. (1995) Effect of phytoplankton cell size on transient-state nitrate and ammonium uptake kinetics. Microbiology 141, 12211229.CrossRefGoogle ScholarPubMed
Sun, J. and Liu, D. (2003) Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25, 13311346.CrossRefGoogle Scholar
Tadonléké, R.D. and Sime-Ngando, T. (2000) Rates of growth and microbial grazing mortality of phytoplankton in a recent artificial lake. Aquatic Microbial Ecology 22, 301313.CrossRefGoogle Scholar
Tungaraza, C., Rousseau, V., Brion, N., Lancelot, C., Gichuki, J., Baeyens, W. and Goeyens, L. (2003) Contrasting nitrogen up-take by diatom and Phaeocystis-dominated phytoplankton assemblages in the North Sea. Journal of Experimental Marine Biology and Ecology 292, 1941.CrossRefGoogle Scholar
Utermöhl, H. (1958) Toward the improvement of the quantitative phytoplankton method. Mitteilungen International Verieningung für Limnologie 9, 139.Google Scholar
Van Rijssel, M., Hamm, C.E. and Gieskes, W.W.C. (1997) Phaeocystis globosa (Prymnesiophyceae) colonies: hollow structures built with small amounts of polysaccharides. European Journal of Phycology 32, 185192.Google Scholar
Venrick, E.L. (1978) How many cells to count? In Sournia, A. (ed.) Phytoplankton manual. Paris: UNESCO Press, pp. 167180.Google Scholar
Vincent, D., Luczak, C. and Sautour, B. (2002) Effects of a brief climatic event on zooplankton community structure and distribution in Arcachon Bay. Journal of the Marine Biological Association of the United Kingdom 82, 2130.CrossRefGoogle Scholar
Wolfstein, K., Colijn, F. and Doerffer, R. (2000) Seasonal dynamics of microphytobenthos biomass and photosynthetics in the northern German Wadden sea, obtained by photosynthetic light dispersion system. Estuarine, Coastal and Shelf Science 51, 651662.CrossRefGoogle Scholar
Woods, E.D., Armstrong, F.A.J. and Richards, F.A. (1967) Determination of nitrate in the sea water by cadmium–copper reduction to nitrite. Journal of the Marine Biological Association of the United Kingdom 47, 2331.CrossRefGoogle Scholar
Zar, J.H. (1996) Biostatistical analysis. Upper Saddle River, New Jersey: Prentice-Hall International.Google Scholar