Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T14:50:30.479Z Has data issue: false hasContentIssue false

Testing ecological and environmental changes during the last 6000 years: a multiproxy approach based on the bivalve Tawera gayi from southern South America

Published online by Cambridge University Press:  01 February 2011

Sandra Gordillo*
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET), Córdoba, Argentina, Centro de Investigaciones Paleobiológicas, Universidad Nacional de Córdoba (CIPAL, UNC), Avenida Vélez Sársfield 299, X5000JJC Córdoba, Argentina
Julieta Martinelli
Affiliation:
Centro de Investigaciones Paleobiológicas, Universidad Nacional de Córdoba (CIPAL, UNC), Avenida Vélez Sársfield 299, X5000JJC Córdoba, Argentina
Javiera Cárdenas
Affiliation:
Fundación Centro de Estudios del Cuaternario (CEQUA), Punta Arenas, Chile, Centro de Ciencias Ambientales EULA, Universidad de Concepción, Casilla 160-C, Barrio Universitario s/n, Concepción, Chile
M. Sol Bayer
Affiliation:
Centro de Investigaciones en Ciencias de la Tierra (CICTERRA, CONICET), Córdoba, Argentina. Centro de Investigaciones Paleobiológicas, Universidad Nacional de Córdoba (CIPAL, UNC), Avenida Vélez Sársfield 299, X5000JJC Córdoba, Argentina
*
Correspondence should be addressed to: S. Gordillo, Centro de Investigaciones en Ciencias de la Tierra (CICTERRA) CONICET, Córdoba, Argentina, Centro de Investigaciones Paleobiológicas, Universidad Nacional de Córdoba (CIPAL, UNC), Avenida Vélez Sársfield 299, X5000JJC Córdoba, Argentina emails: gordillosan@yahoo.es or sgordillo@efn.uncor.edu

Abstract

This paper evaluates if the bivalve Tawera gayi from southern South America represents an opportunity to test ecological variability and environmental changes during the last 6000 years in southern South America. For this purpose, we analyse both modern and fossil (mid-to-late Holocene) T. gayi shells from Tierra del Fuego using different techniques, including taphonomy, stable isotopes, cathodoluminiscence (CL) and linear morphometrics. Taphonomic analysis shows that differences between modern and fossil shells appear best related to local variations of physical factors such as current speed, wave action and freshwater input along the non-uniform Beagle Channel coast. However, slight changes of hydraulic energy regimes throughout the Holocene cannot be ruled out. The analysis of stable isotopes on T. gayi shells indicates a mixing of oceanic waters with freshwater from precipitation, river runoff and glacier meltwater during the mid-to-late Holocene. The high depletion of δ18O at ~4400 years before present would be associated with a period of warmer temperatures, the so-called Hypsithermal. Under CL modern and fossil T. gayi shells show a well defined pattern related to the growth dynamics of the shell, which can lead to a better understanding of its biology, adding details to further palaeoenvironmental analysis. Finally, conventional metrics shows that fossil T. gayi shells are smaller and shorter than modern shells. These differences could be related to Holocene environmental changes, but here are best explained on the basis of a predator–prey relationship. This study shows that T. gayi may be a good candidate for looking at evidences of environmental changes in southern South America, and multi-proxy data are necessary to better understand the driving mechanisms of ecological variability and changes over short geological time intervals of few thousands of years.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allmon, W.D. (1992) Role of temperature and nutrients in extinction of turriteline gastropods: Cenozoic of the northwestern Atlantic and northeastern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology 92, 4154.CrossRefGoogle Scholar
Andrade, S. (1991) Geomorfología costera y antecedentes oceanográficos físicos de la región de Magallanes, Chile (48°–56°S). Anales del Instituto de la Patagonia, Serie Ciencias Naturales 20, 135151.Google Scholar
Barbin, V. (1992) Fluctuation in shell composition in Nautilus (Cephaolopoda, Mollusca): evidence from cathodoluminiscence. Lethaia 25, 391400.CrossRefGoogle Scholar
Barbin, V. and Gaspard, D. (1995) Cathodoluminiscence of Recent articulate brachiopod shells. Implications for growth stages and diagenesis evaluation. Geobios, Mémoire Spéciale 18, 3945.CrossRefGoogle Scholar
Bar-Yosef Mayer, D.E. (2006) Archaeomalacology: molluscs in former environments of human behaviour (Proceedings of the 9th ICAZ Conference). Oxford: Oxbow Books Limited, 184 pp.Google Scholar
Borromei, A.M. and Quattrocchio, M. (2007) Holocene sea-level change inferred from palynological data in the Beagle Channel, southern Tierra del Fuego, Argentina. Ameghiniana 44, 161171.Google Scholar
Brambati, A., De Muro, S. and Di Grande, A. (1998) Marine transition Holocene terraces in the Eastern area of the Straits of Magellan. Bolletino di Geofisica Teorica ed Applicata 39, 47–46.Google Scholar
Brand, U. and McCarthy, F.M.G. (2005) The Allerød–Younger Dryas–Holocene sequence in the west-central Champlain Sea, eastern Ontario: a record of glacial, oceanographic, and climatic changes. Quaternary Science Reviews 24, 14631478.CrossRefGoogle Scholar
Candel, M.S., Borromei, A.M., Martínez, M.A., Gordillo, S., Quattrocchio, M. and Rabassa, J. (2009) Middle–Late Holocene palynology and marine mollusks from Archipiélago Cormoranes area, Beagle Channel, southern Tierra del Fuego, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 273, 111122.CrossRefGoogle Scholar
Claassen, C. (1998) Shells. Cambridge manuals in archaeology series. Cambridge, New York and Melbourne: Cambridge University Press, 266 pp.Google Scholar
Coronato, A., Rabassa, J., Borromei, A., Quattrochio, M. and Bujalesky, G. (1999) Nuevos datos sobre el nivel relativo del mar durante el Holoceno en el Canal Beagle, Tierra del Fuego, Argentina. In Congreso Argentino de Geomorfología y Cuaternario (Actas I). Santa Rosa, Argentina: Bahía Blanca, pp. 2728.Google Scholar
De Francesco, C.G. and Hassan, G.S. (2008) Dominance of reworked fossil shells in modern estuarine environments: implications for paleoenvironmental reconstructions based on biological remains. Palaios 23, 1423.CrossRefGoogle Scholar
De Muro, S., Di Grande, A. and Brambati, A. (2000) Holocene evolution of Primera Angostura based on Map No. 5/12 of the geomorphological atlas of the Strait of Magellan. Terra Antarctica 4, 4354.Google Scholar
Do Campo, M. (1991) Composición mineralógica de conchillas de moluscos marinos actuales de la costa atlántica argentina. Revista Asociación Geológica Argentina 46, 8792.Google Scholar
Dunca, E., Mutvei, H. and Schöne, R.B. (2005) Freshwater bivalves tell of past climates: but how clearly do shells from polluted rivers speak? Palaeogeography, Palaeoclimatology, Palaeoecology 228, 4357.CrossRefGoogle Scholar
Epstein, S. and Mayeda, T. (1953) Variation of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4, 213224.CrossRefGoogle Scholar
Epstein, S., Buchsbaum, R., Lowestam, H.A. and Urey, H.C. (1951) Carbonate-water isotopic temperature scale. Geological Society of America Bulletin 62, 417426.CrossRefGoogle Scholar
Figuerero, M.J. and Mengoni, G.L. (1986) Excavaciones arqueológicas en la Isla El Salmón, Parque Nacional de Tierra del Fuego. Informes de Investigación 4, 1195.Google Scholar
Frey, R.W. and Henderson, S.W. (1987) Left–right phenomena among bivalve shells: examples from the Georgia coast. Senckenbergiana 19, 223247.Google Scholar
Goman, M., Lynn Ingram, B. and Strom, A. (2008) Composition of stable isotopes in geoduck (Panopea abrupta) shells: a preliminary assessment of annual and seasonal paleoceanographic changes in the northeast Pacific. Quaternary International 188, 117125.CrossRefGoogle Scholar
Gordillo, S. (1990) Malacofauna de los niveles marinos holocenos de la Península Ushuaia y alrededores (Canal Beagle, Argentina). In Reunión de campo de Geología del Cuaternario. Santa Rosa, Argentina: Bahía Blanca, pp. 2425.Google Scholar
Gordillo, S. (1991) Paleoecología de moluscos marinos del Holoceno Medio en Isla Gable, Canal Beagle (Tierra del Fuego, Argentina). Ameghiniana 28, 127133.Google Scholar
Gordillo, S. (1994) Perforaciones en bivalvos subfósiles y actuales del Canal Beagle, Tierra del Fuego. Ameghiniana 31, 177185.Google Scholar
Gordillo, S. (1995) Recent and living Hiatella solida (Sowerby, 1834) (Mollusca: Bivalvia) from the Beagle channel southernmost South America. Quaternary of South America and Antarctic Peninsula 9, 189210.Google Scholar
Gordillo, S. (1998) Trophonid gastropod predation on recent bivalves from the Magellanic Region. In Johnson, P.A. and Haggart, J.W. (eds) Bivalves: an eon of evolution. Paleobiological studies honoring Norman N. Newell. Chicago: University of Calgary Press, pp. 251254.Google Scholar
Gordillo, S. (1999) Holocene molluscan assemblages in Magellan Region. Scientia Mariha (Supplement 1) 63, 1522.CrossRefGoogle Scholar
Gordillo, S. (2006) The presence of Tawera gayi (Hupé in Gay, 1854) (Veneridae, Bivalvia) in southern South America: Did Tawera achieve a Late Cenozoic circumpolar traverse? Palaeogeography, Palaeoclimatology, Palaeoecology 240, 587601.CrossRefGoogle Scholar
Gordillo, S., Bujalesky, G., Pirazzoli, P.A., Rabassa, J.O. and Saliege, J.F. (1992) Holocene raised beaches along the northern coast of the Beagle Channel, Tierra del Fuego, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 4154.CrossRefGoogle Scholar
Gordillo, S., Coronato, A.M.J. and Rabassa, J.O. (1993) Late Quaternary evolution of a sub-Antarctic paleofjord, Tierra-Del-Fuego. Quaternary Science Reviews 12, 889897.CrossRefGoogle Scholar
Gordillo, S., Coronato, A.M.J. and Rabassa, J.O. (2005) Quaternary molluscan faunas from the island of Tierra del Fuego after the Last Glacial Maximum. Scientia Marina (Supplement 2) 69, 337348.CrossRefGoogle Scholar
Gordillo, S., Bayer, M.S. and Martinelli, J. (2009) Asociaciones de moluscos holocenos del Canal Beagle, Tierra del Fuego: un análisis cualitativo y cuantitativo de ensambles de valvas fósiles y actuales. IV Congreso Argentino de Cuaternario y Geomorfología. La Plata. Resúmenes, 121 pp.Google Scholar
Gordillo, S., Márquez, F., Cárdenas, J. and Zubimendi, M.A. (2010) Shell variability in Tawera gayi (Veneridae) from southern South America: a morphometric approach based on contour analysis. Journal of the Marine Biological Association of the United Kingdom. doi:10.1017/S0025315410000391Google Scholar
Hagadorn, J.W. and Boyajian, G.E. (1997) Subtle changes in mature predator–prey systems: an example from Neogene Turritella Gastropoda. Palaios 12, 372379.CrossRefGoogle Scholar
Heusser, C.J. (1998) Deglacial paleoclimate of the American sector of the Southern Ocean: Late Glacial–Holocene records from the latitude of Canal Beagle (55°S). Argentine Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 277301.CrossRefGoogle Scholar
Hupé, L.H. (1854) Fauna chilena. In Gay, C. (ed.) Historia física y política de Chile, Zoologcía 8. Paris, 499 pp.Google Scholar
Keith, M.L., Anderson, G.M. and Eichler, R. (1964) Carbon and oxygen isotopic composition of mollusk shells from marine and fresh-water environments. Geochimica et Cosmochimica Acta 28, 17571786.CrossRefGoogle Scholar
Kidwell, S.M. (2002) Ecological fidelity of abundance data from time-averaged fossil assemblages: good news from the dead. In De Renzi, M., Alonso, M.V.P., Belinchon, M., Penalver, E. and Montoya, P. (eds) Current topics on taphonomy and fossilization. Valencia, Spain: Proceedings of the International Conference Taphos 2002, pp. 173178.Google Scholar
Kidwell, S.M. and Bosence, D. (1991) Taphonomy and time-averaging of marine shelly faunas. In Allison, P.A. and Briggs, D.E.G. (eds) Taphonomy. New York: Plenum Press, pp. 115209.CrossRefGoogle Scholar
Killian, R., Baeza, O., Steinke, T., Arévalo, M., Ríos, C. and Schneider, C. (2007) Late Pleistocene to Holocene marine transgression and thermohaline control on sediment transport in the western Magellanes fjord system of Chile (53°S). Quaternary International 161, 90107.CrossRefGoogle Scholar
Kirby, M.X. (2000) Paleoecological differences between Tertiary and Quaternary Crassostrea oysters, as revealed by stable isotope sclerochronology. Palaios 15, 132141.2.0.CO;2>CrossRefGoogle Scholar
Klompmaker, A.A. (2009) Taphonomic bias on drill-hole predation intensities and paleoecology of Pliocene mollusks from Langenboom (Mill), The Netherlands. Palaios 24, 772779.CrossRefGoogle Scholar
Kowalewski, M., Flessa, K.W. and Hallman, D.P. (1995) Ternary taphograms: triangular diagrams applied to taphonomic analysis. Palaios 10, 478483.CrossRefGoogle Scholar
Kowalewski, M. and LaBarbera, M. (2004) Actualistic taphonomy: death, decay, and disintegration in contemporary settings. Palaios 19, 423427.2.0.CO;2>CrossRefGoogle Scholar
Laudien, J., Flint, N.S., Van Der Bank, F.H. and Brey, T. (2003) Genetic and morphological variation in four populations of the surf clam Donax serra (Roding) from southern African sandy beaches. Biochemical Systematics and Ecology 31, 751772.CrossRefGoogle Scholar
Lomovasky, B.J., Brey, T. and Morriconi, E. (2005) Population dynamics of the venerid bivalve Tawera gayi (Hupé, 1854) in the Ushuaia Bay, Beagle Channel. Journal of Applied Ichthyology 21, 6469.CrossRefGoogle Scholar
Lowe, J.J. and Walker, M.J.C. (1997) Reconstructing Quaternary environments. 2nd edition. London: Pearson-Prentice Hall.Google Scholar
Márquez, F., Robledo, J., Escati Peñaloza, G., Ven der Molen, S. (2009) Use of different geometric morphometrics tolos for the discrimination of phenotypic stocks of the striped clam Ameghinomya antiqua (Veneridae) in north Patagonia, Argentina. Fisheries Research. doi: 10.1016/j.fishres.2009.09.018Google Scholar
McCulloch, R.D., Fogwill, C.J., Sugden, D.E., Bentley, M.J. and Kubik, P.W. (2005) Chronology of the last glaciation in central Strait of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler 87, 289312.CrossRefGoogle Scholar
McConnaughey, T. (1989) 13C and 18O isotopic disequilibrium in biological carbonates: I. Patterns. Geochimica et Cosmochimica Acta 53, 151162.CrossRefGoogle Scholar
McConnaughey, T., Burdett, J., Whelan, J.F. and Paull, C.K. (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimic Acta 61, 611622.CrossRefGoogle Scholar
Obelic, B., Álvarez, A., Argullós, J. and Piana, E.L. (1998) Determination of water palaeotemperature in the Beagle Channel (Argentina) during the last 6000 yr through stable isotope composition of Mytilus edulis shells. Quaternary of South America and Antarctic Peninsula 11, 4771.Google Scholar
Palma, S. and Aravena, G. (2001) Distribución de quetognatos, eufáusidos y sifonóforos en la Región Magallánica. Ciencia y Tecnología del Mar 24, 4759.Google Scholar
Panarello, H. (1987). Oxygen-18 temperatures on present and fossil invertebrate shells from Túnel Site, Beagle Channel, Argentina. Quaternary of South America and Antarctic Peninsula 5, 8392.Google Scholar
Parsons, K.M. and Brett, C.E. (1991) Taphonomic processes and biases in modern marine environments: an actualistic perspective on fossil assemblage preservation. In Donovan, S.K. (ed.) The processes of fossilization. London: Belhaven Press, pp. 2265.Google Scholar
Porter, S., Stuiver, M. and Heusser, C. (1984) Holocene sea-level changes along the Strait of Magellan and Beagle Channel, South America. Quaternary Research 22, 5967.CrossRefGoogle Scholar
Porter, S., Clapperton, C.M. and Sugden, D.E. (1992) Chronology and dynamics of deglaciation along and near the Strait of Magellan, southernmost South America. Sveriges Geologiska Undersökning 81, 233239.Google Scholar
Purton-Hildebrand, L.M.A., Grime, G.W., Shields, G.A. and Brasier, M.D. (2001) The use of external micro-PIXE to investigate the factors determining the Sr:Ca ratio in the shells of fossil aragonitic molluscs. Nuclear Instruments and Methods in Physics Research B 181, 506510.CrossRefGoogle Scholar
Rabassa, J., Heusser, C. and Stuckenrath, R. (1986) New data on Holocene Sea Transgression in the Beagle channel: Tierra del Fuego, Argentina. In Rabassa, J.O., Heusser, C.J. and Stuckenrath, R. (eds) Quaternary of South America and Antarctic Peninsula 4, 291309.Google Scholar
Rabassa, J.O., Coronato, A., Bujalesky, G., Salemme, M., Roig, C., Meglioli, A., Heusser, C., Gordillo, S., Roig, F., Borromei, A. and Quattrocchio, M. (2000) Quaternary of Tierra del Fuego, Southernmost South America: an updated review. International Quaternary 68–71, 217240.CrossRefGoogle Scholar
Ramseyer, K., Fischer, J., Matter, A., Eberhardt, P. and Geiss, J. (1989) A cathodoluminiscence microscope for low intensity luminescence. Journal of Sedimentary Petrology 59, 619622.CrossRefGoogle Scholar
Richardson, C.A., Peharda, M., Kennedy, H., Kennedy, P. and Onofri, V. (2004) Age, growth rate and season of recruitment of Pinna nobilis (L) in the Coratian Adriatic determined from Mg:Ca and Sr:Ca shell profiles. Journal of Experimental Marine Biology and Ecology 299, 116.CrossRefGoogle Scholar
Roy, K., Jablonski, D. and Valentine, J. (2001) Climate change, species range limits and body size in marine bivalves. Ecology Letters 4, 366370.Google Scholar
Schöne, B.R., Fiebig, J., Pfeiffer, M., Gleβ, R., Hickson, J., Johnson, A.L.A., Dreyer, W. and Oschmann, W. (2005) Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology 228, 130148.CrossRefGoogle Scholar
Servicio de Hidrografía Naval. (1981) Derrotero Argentino. Parte III: Archipiélago Fueguino e Islas Malvinas. Publicación H.203. Buenos Aires: Armada Argentina, 304 pp.Google Scholar
Speyer, S.E. and Brett, C.E. (1988) Taphofacies models for epeiric sea environments-middle Paleozoic examples. Palaeogeography, Palaeoclimatology, Palaeoecology 3, 225262.CrossRefGoogle Scholar
Stanley, S.M. (1975) Why clams have the shape they have: an experimental analysis of burrowing bivalves. Paleobiology 1, 4858.CrossRefGoogle Scholar
Strelin, J., Casassa, G., Rosqvist, G. and Holmlund, P. (2008) Holocene glaciations in the Ema Glacier valley, Monte Sarmiento Massif, Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 299314.CrossRefGoogle Scholar
Teusch, K., Jones, D.S. and Allmon, W.D. (2002) Morphological variation in turritellid gastropods from the Pleistocene to Recent of Chile: association with upwelling intensity. Palaios 17, 366377.2.0.CO;2>CrossRefGoogle Scholar
Thompson, J.N. (2009) The coevolving web of life. American Naturalist 173, 125150.CrossRefGoogle ScholarPubMed
Thórarindsóttir, G.G., Gunnarsson, K. and Bogason, E. (2009) Mass mortality of ocean quahog, Arctica islandica, on hard substratum in Lonafjördur, north-eastern Iceland after a storm. Marine biodiversity records 2, 13.CrossRefGoogle Scholar
Tomašovych, A. and Farkaš, J. (2005) Cathodoluminiscence of Late Triassic terebratulid brachiopods: implications for growth patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 216, 215233.CrossRefGoogle Scholar
Vermeij, G.J. (1987) Evolution and escalation: an ecological history of life. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Vermeij, G.J. (1990) Tropical Pacific pelecypods and productivity: a hypothesis. Bulletin of Marine Science 47, 6267.Google Scholar
Vermeij, G.J. (1994) The evolutionary interaction among species: selection, escalation, and coevolution. Annual Review of Ecology and Systematics 25, 219236.CrossRefGoogle Scholar
Wang, C.H. and Peng, T.R. (1990) Oxygen and carbon isotopic records of mollusks in the Kuokang Shell Bed, Taiwan: implications and applications. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 237244.CrossRefGoogle Scholar
Wang, C.H., Peng, T.R. and Chen, P.F. (1991) Oxygen and carbon isotopic compositions of mollusks from the Late Pleistocene Szekou Formation, Southern Taiwan. Proceedings of the National Science Council, Republic of China 5, 455464.Google Scholar
Zuschin, M., Stachowitschm, M. and Stanton, R.J. Jr (2003) Patterns and processes of shell fragmentation in modern and ancient marine environments. Earth-Science Reviews 63, 3382.CrossRefGoogle Scholar