Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T17:00:54.742Z Has data issue: false hasContentIssue false

Trophic ecology of the chihuil sea catfish (Bagre panamensis) in the south-east Gulf of California, México

Published online by Cambridge University Press:  27 February 2017

Víctor M. Muro-Torres
Affiliation:
Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510, México, DF, México
Felipe Amezcua*
Affiliation:
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, 82000 Mazatlan, Sinaloa, México
Raul E. Lara-Mendoza
Affiliation:
Instituto Nacional de Pesca, CRIP Cd. del Carmen, Av. Héroes del 21 de Abril No.26, Cd. Del Carmen 24100, Campeche
John T. Buszkiewicz
Affiliation:
Department of Biology, Southeast Missouri State University, One University Plaza, MS 6200 Cape Girardeau, Missouri 63701, USA
Felipe Amezcua-Linares
Affiliation:
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
*
Correspondence should be addressed to: F. Amezcua, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, 82000 Mazatlan, Sinaloa, México email: famezcua@ola.icmyl.unam.mx

Abstract

The trophic ecology of the chihuil sea catfish Bagre panamensis was studied through high-resolution variations in its feeding habits and trophic position (TP) in the SE Gulf of California, relevant to sex, size and season. The combined use of stomach content (SCA) and stable isotope analysis (SIA) allowed us to perform these analyses and also estimate the TP of its preys. Results of this study show that the chihuil sea catfish is a generalist and opportunistic omnivore predator that consumes primarily demersal fish and peneid shrimps. Its diet did not vary with climatic season (rainy or dry), size or sex. Results from the SIA indicated high plasticity in habitat use and prey species. The estimated TP value was 4.19, which indicates a tertiary consumer from the soft bottom demersal community in the SE Gulf of California, preying on lower trophic levels, which aids in understanding the species' trophic role in the food web. Because this species and its prey are important to artisanal and industrial fisheries in the Gulf of California, diet assimilation information is useful for the potential establishment of an ecosystem-based fisheries management in the area.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amezcua, F., Madrid, J. and Aguirre, H. (2006) Effect of the artisanal shrimp fishery on the ichthyofauna in the coastal lagoon of Santa Maria la Reforma, Gulf of California. Ciencias Marinas 32, 97109.CrossRefGoogle Scholar
Bakhoum, S.A. (2007) Diet overlap of immigrant narrow barred Spanish mackerel Scomberomorus commerson (Lacepede, 1802) and the large head hair tail ribbonfish Trichiurus lepturus (Linnaeus, 1758) in the Egyptian Mediterranean coast. Animal Biodiversity and Conservation 2, 147160.CrossRefGoogle Scholar
Bax, N.J. (1998) The significance and prediction of predation in marine fisheries. ICES Journal of Marine Science: Journal du Conseil 55, 9971030.CrossRefGoogle Scholar
Begon, M., Townsend, C.R. and Harper, J.L. (2006) Ecology: from individuals to ecosystems. Oxford: Blackwell Publishing.Google Scholar
Branch, T.A., Watson, R., Fulton, E.A., Jennings, S., McGilliard, C.R., Pablico, G.T., Ricard, D. and Tracey, S.R. (2010) The trophic fingerprint of marine fisheries. Nature 468, 431435.CrossRefGoogle ScholarPubMed
Clark, J.S., Carpenter, S.R., Barber, M., Collins, S., Dobson, A., Foley, J.A., Lodge, D.M., Pascual, M., Pielke, R., Pizer, W., Pringle, C., Reid, W., Rose, K.A., Sala, O., Schlesinger, W.H., Wall, D.H. and Wear, D. (2001) Ecological forecasts: an emerging imperative. Science 293, 657660.CrossRefGoogle ScholarPubMed
Clarke, K.R. and Warwick, R.M. (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: PRIMER E.Google Scholar
Cortes, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.CrossRefGoogle Scholar
Cruz, V.H., Abitia, L.A., Campos, L. and Galvan, F. (2000) Trophic biology contributions of the slender-spined catfish Arius platypogon (Günther, 1864), in San Ignacio Lagoon, Baja California Sur, Mexico. Revista de Biología Marina y Oceanografía 35, 4147.Google Scholar
Ellis, J.K. (2003) Diet of the sandbar shark, Carcharhinus plumbeus, in Chesapeake Bay and adjacent waters. MSc thesis. College of William and Mary, Virginia, USA.Google Scholar
Ferry, L.A. and Cailliet, G.M. (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In Mac Kinlay, D. and Shearer, K. (eds) Feeding ecology and nutrition in fish, symposium proceedings. San Francisco, CA: American Fisheries Society, pp. 7180.Google Scholar
Fine, M.L., Sismour, E.N., Newton, S.H., Bosher, B.T., Sullivan, A.D.H., Miano, J.P., Ghahramani, Z.N., Mohajer, Y.J. and Nellis, S.C. (2011) A primer on functional morphology and behavioural ecology of the pectoral spine of the channel catfish. In Michaletz, P.H. and Travnichek, V.H. (eds) Conservation, ecology and management of catfish. Bethesda, MA: American Fisheries Society Symposium 77, pp. 745753.Google Scholar
García, C.B. and Contreras, C.C. (2011) Trophic levels of fish species of commercial importance in the Colombian Caribbean. International Journal of Tropical Biology 59, 11951203.Google ScholarPubMed
Giarrizzo, T. and Ulrich, S. (2008) Ontogenetic and seasonal shifts in the diet of the pemecou sea catfish Sciades herzbergii (Siluriformes: Ariidae), from a macrotidal mangrove creek in the Curuçá estuary, Northern Brazil. International Journal of Tropical Biology 56, 861873.Google ScholarPubMed
Jackson, A.L., Inger, R., Parnel, A.C. and Bearhop, S. (2011) Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R’. Journal of Animal Ecology 80, 595602.CrossRefGoogle ScholarPubMed
Koen-Alonso, M. (2007) A process-oriented approach to the multispecies functional response. In Rooney, N., McCann, K.S. and Noakes, D.L.G. (eds) From energetics to ecosystems: the dynamics and structure of ecological systems. Dordrecht: Springer, pp. 136.Google Scholar
Krebs, C.J. (1999) Ecological methodology. 2nd edition. Menlo Park, CA: Benjamin/Cummings.Google Scholar
Labropoulou, M. and Eleftheriou, A. (1997) The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. Journal of Fish Biology 50, 324340.CrossRefGoogle Scholar
Langton, R.W. and Watling, L. (1990) The fish-benthos connection: a definition of prey groups in the Gulf of Maine. In Trophic relationships in the marine environment: Proceedings 24th European Marine Biology Symposium, pp. 424–438.Google Scholar
Layman, C.A., Winemiller, K.O., Arrington, D.A. and Jepsen, D.B. (2005) Body size and trophic position in a diverse tropical food web. Ecology 86, 25302535.CrossRefGoogle Scholar
Madigan, D.J., Carlisle, A.B., Dewar, H., Snodgrass, O.E., Litvin, S.Y., Micheli, F. and Block, B.A. (2012) Stable isotope analysis challenges waspwaist food web assumptions in an upwelling pelagic ecosystem. Scientific Reports 2, 654. doi: 10.1038/srep00654.CrossRefGoogle Scholar
Madrid-Vera, J., Amezcua, F. and Morales-Bojorquez, E. (2007) An assessment approach to estimate biomass of fish communities from bycatch data in a tropical shrimp-trawl fishery. Fisheries Research 83, 8189.CrossRefGoogle Scholar
Marasco, R.J., Goodman, D., Grimes, C.B., Lawson, P.W., Punt, A.E. and Quinn, T.J. II (2007) Ecosystem-based fisheries management: some practical suggestions. Canadian Journal of Fisheries and Aquatic Sciences 64, 928939.CrossRefGoogle Scholar
Mendoza-Carranza, M. (2003) Feeding habits of gafftopsail catfish Bagre marinus (Ariidae) in Paraíso, Tabasco, México. Hidrobiologica 13, 119126.Google Scholar
Muro-Torres, V.M. and Amezcua, F. (2011) Observations on the reproductive biology of the chihuil sea catfish in the Southeast Gulf of California: implications for management. In Michaletz, P.H. and Travnichek, V.H. (eds) Conservation, ecology and management of catfish. Bethesda, MA: American Fisheries Society Symposium 77, pp. 325333.Google Scholar
Park, R. and Epstein, S. (1961) Metabolic fractionation of 13C and 12C in plants. Plant Physiology 36, 133138.CrossRefGoogle Scholar
Parkyn, S.M., Collier, K.J. and Hicks, B.J. (2001) New Zealand stream crayfish: functional omnivores but trophic predators? Freshwater Biology 46, 641652.CrossRefGoogle Scholar
Parnell, A., Inger, R., Bearhop, S. and Jackson, A.L. (2008) SIAR: Stable Isotope Analysis in R. http://cran.r-project.org/web/packages/siar/index.html.Google Scholar
Pauly, D. and Watson, R. (2005) Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences 360, 415423.CrossRefGoogle ScholarPubMed
Phillips, D.L., Inger, R., Bearhop, S., Jackson, A.L., Moore, J.W., Parnell, A.C., Semmens, B.X. and Ward, E.J. (2014) Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of Zoology 92, 823835.CrossRefGoogle Scholar
Pinkas, L., Oliphant, M.S. and Iverson, I.L.K. (1971) Food habits of albacore, bluefin tuna and bonito in Californian waters. California Fish and Game 152, 1105.Google Scholar
Post, D.M. (2002) Using stable isotopes to estimate trophic position models, methods, and assumptions. Ecology 83, 703718.CrossRefGoogle Scholar
Torres-Rojas, Y., Hernandez Herrera, A., Ortega-Garcia, S. and Domeier, M. (2013) Stable isotope differences between blue marlin (Makaira nigricans) and striped marlin (Kajikia audax) in the southern Gulf of California, Mexico. Bulletin of Marine Science 89, 421436.CrossRefGoogle Scholar
Tripp-Valdez, A. (2010) Comparación de dos enfoques metodológicos para el análisis de la estructura trófica de la ictiofauna de fondos blandos de las costas de Nayarit, México. PhD thesis. Centro Interdisciplinario de Ciencias Marinas, IPN, La Paz, BCS, México.Google Scholar
Yañez-Arancibia, A. and Lara-Domínguez, A. (1988) Ecology of three sea catfishes (Ariidae) in a tropical coastal ecosystem–Southern Gulf of Mexico. Marine Ecology Progress Series 49, 215230.CrossRefGoogle Scholar
Yañez-Arancibia, A., Sanchez-Gil, P., Villalobos, Z.G. and Rodriguez, C.P. (1985) Distribución y abundancia de las especies dominantes en las poblaciones de peces demersales de la plataforma continental mexicana del Golfo de México. In Yáñez-Arancibia, A. (ed.) Recursos pesqueros potenciales de México: la pesca acompañante del camarón. Mexico City: Programa Universitario de Alimentos, Instituto de Ciencias del Mar y Limnología & Instituto Nacional de la Pesca, Universidad Nacional Autónoma de México, pp. 315398.Google Scholar
Zar, J.H. (1999) Biostatistical analysis. 3rd edition. Upper Saddle River, NJ: Prentice Hall.Google Scholar