Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:05:40.658Z Has data issue: false hasContentIssue false

Trophic habitat of the Pacific sharpnose shark, Rhizoprionodon longurio, in the Mexican Pacific

Published online by Cambridge University Press:  13 August 2013

Vanessa Guadalupe Alatorre-Ramirez
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Avenida IPN s/n Col. Playa Palo de Santa Rita, La Paz, B.C.S. C.P. 23096México
Felipe Galván-Magaña*
Affiliation:
Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Avenida IPN s/n Col. Playa Palo de Santa Rita, La Paz, B.C.S. C.P. 23096México
Yassir Edén Torres-Rojas
Affiliation:
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Avenida Joel Montes Camarena S/N Apartado Postal 811 C.P. 82040, Mazatlán, Sin. México
*
Correspondence should be addressed to: F. Galván-Magaña, Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, Avenida IPN s/n Col. Playa Palo de Santa Rita, La Paz, B.C.S. C.P. 23096México email: galvan.felipe@gmail.com

Abstract

The Pacific sharpnose shark Rhizoprionodon longurio is caught seasonally by inshore artisanal fisheries in the Mexican Pacific. Our study focuses on the feeding ecology of this shark species in the southern Gulf of California. The prey species obtained from stomach contents were identified and quantified, and variations between sexes and maturity stages were determined. A total of 98 stomachs were analysed during two periods (2000–2001 and 2003–2004); 64% of stomachs contained food. The trophic spectrum was composed of four cephalopod species, three crustacean species, and 13 pelagic and benthic fish species. According to the index of relative importance (%IRI), the fish Echiophis brunneus (IRI = 14.4%), Opisthopterus dovii (IRI = 12.2%) and Scomber japonicus (IRI = 9.6%) were the main prey items. Based on diversity values, IRI values and diet breadth, R. longurio is an opportunistic predator. The trophic position of R. longurio was above four in all categories, which indicates that this shark is a tertiary consumer.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrams, P. (2000) The evolution of predator–prey interactions: theory and evidence. Annual Reviews in Ecology and Systematics 33, 79105.CrossRefGoogle Scholar
Allen, G.R. and Robertson, D.R. (1994) Fishes of the tropical eastern Pacific. Honolulu, HI: University of Hawaii Press.Google Scholar
Bascompte, J., Melian, C.J. and Sala, E. (2005) Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America 102, 54435447.CrossRefGoogle ScholarPubMed
Baum, J.K. and Myers, R.A. (2004) Shifting baselines and the decline of pelagic sharks in the Gulf of Mexico. Ecology Letters 7, 135145.CrossRefGoogle Scholar
Bizzarro, J.J., Smith, W.D., Jones, E.J. and Cailliet, G.M. (2000) The artisanal elasmobranch fishery of Baja California Norte (Gulf of California, México). In American Elasmobranch Society (eds) 80th Annual Meeting of the American Society of Ichthyologists and Herpetologists & 16th Annual Meeting of the American Elasmobranch Society. University of Florida Museum of Natural History: American Elosmobranch Society, pp. 14–20.Google Scholar
Brusca, R.C. (1980) Common intertidal invertebrates of the Gulf of California. Tucson, AZ: University of Arizona Press.Google Scholar
Castillo-Géniz, J.L. (1990) Contribución al conocimiento de la biología y pesquería del cazón bironche, Rhizoprionodon longurio, (Jordan y Gilbert, 1882) (Elasmobranchii, Carcharhinidae), del sur de Sinaloa, México. BSc thesis, Universidad Nacional Autónoma de México, México.Google Scholar
Castillo-Géniz, J.L. (1992) Diagnóstico de la pesquería del tiburón en México. Instituto Nacional de la Pesca, Secretaria de Pesca, México, 76 pp.Google Scholar
Christensen, V. and Pauly, D. (1992) ECOPATH II—a software for balancing steady-state ecosystem models and calculating network characteristics. Ecology Modelling 61, 169185.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M. (2001) Changes in marine communities: an approach to statistical analysis and interpretation. 2nd edition. Plymouth: PRIMER-E Ltd.Google Scholar
Clarke, M.R. (1986) A handbook for the identification of cephalopod beaks. Oxford: Clarendon Press.Google Scholar
Clothier, C.R. (1950) A key to some Southern California fishes based on vertebral characters. Fishery Bulletin 79, 183.Google Scholar
Colwell, R.K. (2006) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8. Available at: www.purl.oclc.org/estimates (accessed 1 July 2013).Google Scholar
Compagno, L.J.V. (1984) Sharks of the world: an annotated and illustrated catalogue of the shark species known to date. Part 2. Carcharhiniformes. In FAO Species Catalogue. Volume 4, FAO Fisheries Synopsis No. 125. Rome: FAO, pp. 251655.Google Scholar
Compagno, L.J.V. (1990) Systematics and body form. In Hamlett, W.C. (ed.) Sharks, skates and rays, the biology of elasmobranch fishes. Baltimore, MD: The Johns Hopkins University Press, pp. 142.Google Scholar
Cortés, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.CrossRefGoogle Scholar
Cortés, E. (1999) Standardized diet compositions and trophic levels of sharks. Journal of Marine Science 56, 707717.Google Scholar
Cortés, E. and Gruber, S.H. (1990) Diet, feeding habits and estimates of daily ration of young lemon sharks, Negaprion brevirostris (Poey). Copeia 1990, 204218.CrossRefGoogle Scholar
Escobar-Sánchez, O., Galván-Magaña, F. and Abitia-Cárdenas, L.A. (2010) Trophic level and isotopic composition of δ13C and δ15N of Pacific angel shark, Squatina californica (Ayres, 1859), in the southern Gulf of California, México. Journal of Fisheries and Aquatic Science 6, 141150.CrossRefGoogle Scholar
Ferretti, F., Myers, R.A., Serena, F. and Lotze, H.K. (2008) Loss of large predatory sharks from the Mediterranean Sea. Conservation Biology 22, 952964.CrossRefGoogle ScholarPubMed
Ferry, L.A. and Cailliet, G.M. (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In MacKinlay, D. and Shearer, K. (eds) Feeding ecology and nutrition in fish: Proceedings of the Symposium on the Feeding Ecology and Nutrition in Fish, International Congress on the Biology of Fishes. San Francisco, CA: American Fisheries Society, pp. 7180.Google Scholar
Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E. and Niem, V.H. (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Volumen I: Plantas e invertebrados. Rome: FAO, pp. 1646.Google Scholar
Frank, K.T., Petrie, B., Choi, J.S. and Leggett, W.C. (2005) Trophic cascades in a formerly cod-dominated ecosystem. Science 308, 16211623.CrossRefGoogle Scholar
Franke, R. and Acero, A.P. (1991) Registros nuevos y comentarios adicionales sobre peces cartilaginosos del Parque nacional Natural Gorgona (Pacifico Colombiano). Trianea 4, 527540.Google Scholar
Froese, R. and Pauly, D. (2003) Dynamics of overfishing. In Lozán, J.L., Rachor, E., Sündermann, J. and von Westernhagen, H. (eds) Warnsignale aus Nordsee und Wattenmeer—eine aktuelle Umweltbilanz. Hamburg: GEO, pp. 288295.Google Scholar
Galván-Magaña, F. (1988) Composición y análisis de la dieta del atún aleta amarilla Thunnus albacares en el Pacífico mexicano durante 1984–1985. Tesis de maestría. CICIMAR-IPN, La Paz, México.Google Scholar
Galván-Magaña, F., Nienhuis, H.J. and Klimley, A.P. (1989) Seasonal abundance and feeding habits of sharks of the lower Gulf of California, México. California Fish and Game 75, 7484.Google Scholar
Heithaus, M.R., Frid, A., Wirsing, A.J. and Worm, B. (2008) Predicting ecological consequences of marine top predator declines. Trends in Ecology and Evolution 23, 202210.CrossRefGoogle ScholarPubMed
Jones, B.C. and Geen, G.H. (1977) Food and feeding of spiny dogfish (Squalus acanthias) in British Columbia waters. Journal of the Fisheries Research Board of Canada 34, 20672078.Google Scholar
Kato, S. and Hernández, C. (1967) Shark tagging in the Eastern Pacific Ocean, 1962–1965. In Gilbert, P.W., Mathewson, R.F. and Rall, D.P. (eds) Sharks, skates and rays. Baltimore, MD: The Johns Hopkins University Press, pp. 93109.Google Scholar
Klimley, A.P. (1983) Social organization of schools of the scalloped hammerhead, Sphyrna lewini (Griffith & Smith), in the Gulf of California. PhD thesis. University of California, San Diego, CA, USA.Google Scholar
Krebs, C.J. (1985) Ecología: estudio de la distribución y la abundancia. Haría: D.F. México.Google Scholar
Krebs, C.J. (1999) Ecological methodology. 2nd edition. Menlo Park, CA. Benjamin Cummings, 620 pp.Google Scholar
Labropoulou, M. and Eleftheriou, A. (1997) The foraging ecology of two pairs of congeneric demersal fish species: importance of morphological characteristics in prey selection. Journal of Fish Biology 50, 324340.CrossRefGoogle Scholar
Lowe, C.G., Wetherbee, B.M., Crow, G.L. and Tester, A.L. (1996) Ontogenetic dietary shifts and feeding behaviour of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environmental Biology of Fishes 47, 203211.CrossRefGoogle Scholar
Manjarrez-Acosta, C., Juárez Rentería, F., Rodríguez Espinoza, J.P., Díaz Duran, R., Lizárraga Humaran, X. and Vega Merecer, A.E. (1983) Estudio sobre algunos aspectos biológico-pesqueros del tiburón en la zona sur de Sinaloa. BSc thesis. Universidad Autónoma de Sinaloa, Mazatlán, México.Google Scholar
Márquez-Farías, J.F., Corra-Espinosa, D. and Castillo-Géniz, J.L. (2005) Observations on the biology of the Pacific sharpnose shark, Rhizoprionodon longurio (Jordan & Gilbert, 1882), captured in southern Sinaloa, México. Journal of Northwest Atlantic Fisheries Science 35, 107114.CrossRefGoogle Scholar
Medved, R.J., Stillwell, C.E. and Casey, J.J. (1988) The rate of food consumption of young sandbar sharks (Carcharhinus plumbeus) in Chincoteague Bay, Virginia. Copeia 1988, 956963.CrossRefGoogle Scholar
Myers, R.A., Baum, J.K., Shepherd, T., Powers, S.P. and Peterson, C.H. (2007) Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315, 18461850.CrossRefGoogle ScholarPubMed
Olson, R.J. and Boggs, C.H. (1986) Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations. Canadian Journal of Fisheries and Aquatic Sciences 439, 17601775.CrossRefGoogle Scholar
Pace, M.L., Cole, J.J., Carpenter, S.R. and Kitchell, J.F. (1999) Trophic cascades revealed in diverse ecosystems. Trends in Ecology and Evolution 14, 483488.CrossRefGoogle ScholarPubMed
Paine, R.T. (1984) Ecological determinism in the competition for space. Ecology 65, 13391348.CrossRefGoogle Scholar
Pauly, D. (1998) Tropical fishes: patterns and propensities. Journal of Fish Biology 53, 117.Google Scholar
Pérez-Jiménez, J.C., Sosa-Nishizaki, O., Furlong-Estrada, E., Corro-Espinosa, D., Venegas-Herrera, A. and Barragán-Cuencas, O.V. (2005) Artisanal shark fishery at ‘Tres Marias’ islands and Isabel island in the Central Mexican Pacific. Journal of Northwest Atlantic Fisheries Science 35, 333343.CrossRefGoogle Scholar
Pielou, E.C. (1975) Ecological diversity. New York: John Wiley and Sons.Google Scholar
Pinkas, L., Oliphant, M.S., and Iverson, L.K. (1971) Food habits of albacore, bluefin tuna and bonito in California waters. Fishery Bulletin 152, 1105.Google Scholar
Preti, A., Smith, S.E. and Ramon, D.A. (2001) Feeding habits of the common thresher (Alopias vulpinus) sampled from the California-based drift gill-net fishery, 1998–99. California Cooperative Oceanic Fisheries Investigations Reports 42, 145152.Google Scholar
Salini, J.P., Brewer, D.T. and Blaber, S.J.M. (1998) Dietary studies on the predatory fishes of the Norman River Estuary, with particular reference to penaeid prawns. Estuarine, Coastal and Shelf Science 46, 837847.CrossRefGoogle Scholar
Shepherd, T.D. and Myers, R.A. (2005) Direct and indirect fishery effects on small coastal elasmobranchs in the northern Gulf of Mexico. Ecology Letters 8, 10951104.CrossRefGoogle Scholar
Simpfendorfer, C.A. (1998) Diet of the Australian sharpnose shark, Rhizoprionodon taylori, from northern Queensland. Marine and Freshwater Research 49, 757761.CrossRefGoogle Scholar
Simpfendorfer, C.A., Goodreid, A.B. and McAuley, R.B. (2001) Size, sex and geographic variation in the diet of the tiger shark, Galeocerdo cuvier, from Western Australian waters. Environmental Biology of Fishes 61, 3746.CrossRefGoogle Scholar
Smith, W.D., Márquez-Farias, J.F. and Pérez-Jiménez, J.C. (2009) Rhizoprionodon longurio. IUCN Red List of Threatened Species. (Version 2012.2), available at: www.iucnredlist.org (accessed 1 July 2013).Google Scholar
Steel, R.G.D. and Torrie, J.H. (1992) Bioestadística. Principios y procedimientos. Mexico City, Mexico: Editorial Graf América.Google Scholar
Stillwell, C.E. and Kohler, N.E. (1982) Food, feeding habits, and estimates of daily ration of the shortfin mako (Isurus oxyrinchus) in the northern Atlantic. Canadian Journal of Fisheries and Aquatic Sciences 39, 407414.CrossRefGoogle Scholar
Torres-Rojas, Y.E., Hernández-Herrera, A., Galván-Magaña, F. and Alatorre-Ramírez, V.G. (2009) Stomach content analysis of juvenile scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlán, México. Aquatic Ecology 44, 301308.CrossRefGoogle Scholar
Tricas, T.C. (1979) Relationships of the blue shark Prionace glauca, and its prey species near Santa Catalina Island, California. Fishery Bulletin 77, 175182.Google Scholar
Wolff, G.A. (1984) Identification and estimation of size from the beaks of 18 species of cephalopods from the Pacific Ocean. NOAA Technical Report 17. Silver Spring, MD: NMFS.Google Scholar
Wootton, R.J. (1990) Ecology of teleost fishes. London: Chapman & Hall.Google Scholar
Worm, B. and Myers, R.A. (2003) Meta-analysis of cod–shrimp interactions reveals top-down control in oceanic food webs. Ecology 84, 162173.CrossRefGoogle Scholar