Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T05:02:20.712Z Has data issue: false hasContentIssue false

Trophic spectrum and feeding pattern of cannonball jellyfish Stomolophus meleagris (Agassiz, 1862) from central Gulf of California

Published online by Cambridge University Press:  06 October 2015

Francisco J. Álvarez-Tello
Affiliation:
Centro de Investigaciones Biológicas del Noroeste S.C., Km. 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, CP 85460, México
Juana López-Martínez*
Affiliation:
Centro de Investigaciones Biológicas del Noroeste S.C., Km. 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, CP 85460, México
Daniel B. Lluch-Cota
Affiliation:
Centro de Investigaciones Biológicas del Noroeste, S.C. Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur; La Paz, B.C.S., C.P. 23096, México
*
Correspondence should be addressed to:J. López-Martínez, Centro de Investigaciones Biológicas del Noroeste S.C., Km. 2.35 Carretera a Las Tinajas, S/N Colonia Tinajas, Guaymas, Sonora, CP 85460, México email: jlopez04@cibnor.mx

Abstract

The diet and feeding pattern of scyphomedusa Stomolophus meleagris (Rhizostomeae) was studied, by comparing stomach samples from different developmental stages and environmental zooplankton with the aim to determine diet composition, trophic niche breadth, selectivity and feeding overlap of this edible jellyfish species. Samplings were performed during April and December 2010 and in January 2011, in the coastal lagoon Las Guásimas (27°49′–27°54′N 110°40′–110°35′W), central Gulf of California, which consisted of zooplankton tows and jellyfish collections for stomach content. More than 39 prey items were identified in the gut contents (N = 69), from which eight taxa formed over 90% of the total. Fish eggs were considered main prey (58.6%), copepods (10.8%), veliger larvae of gastropod (13.0%) and bivalve (12.7%) were secondary prey while cirriped and decapod larvae were incidental prey (<3%). However, these proportions varied significantly between small, medium and large size classes of medusa as well as number and type of prey increasing as a function of medusa size. Values of Levin's index confirmed S. meleagris is a specialist predator and Pearre's index showed positive selection of fish eggs, gastropods, bivalves and cirripeds while selectivity was negative for copepods and appendicularians. The relative timing of these changes suggests that ontogenetic processes are closely related with shift in the diet, which indicates increasing predation pressure during development of the medusoid stage of this species, thus emphasizing their ecological importance in coastal ecosystems.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Álvarez-Tello, F.J. (2007) La pesquería de la medusa bola de cañón (Stomolophus meleagris) en la región de Bahía de Kino-El Choyudo, Sonora, durante 2006. MS Thesis. Instituto Tecnológico de Guaymas, México.Google Scholar
Arai, M.N. (1997) A functional biology of Scyphozoa. London: Chapman & Hall.Google Scholar
Arreola-Lizárraga, J.A. (2003) Bases de manejo costero: patrones ecológicos en la laguna costera Las Guásimas, Territorio Yaqui, México. PhD thesis, Centro de Investigaciones Biológicas del Noroeste, La Paz, B.C.S. México. 61 pp.Google Scholar
Balech, E. and Ehrlich, M.D. (2008) Esquema biogeográfico del Mar Argentino. Revista de Investigación y Desarrollo Pesquero 19, 4575.Google Scholar
Calder, D.R. (1982) Life history of the cannonball jellyfish, Stomolophus meleagris L. Agassiz, 1860 (Scyphozoa, Rhizostomida). Biological Bulletin 162, 149162.CrossRefGoogle Scholar
Calder, D.R. (1983) Nematocysts of stages in the life cycle of Stomolophus meleagris, with keys to scyphistomae and ephyrae of some western Atlantic Scyphozoan. Canadian Journal of Zoology 61, 11851192.CrossRefGoogle Scholar
Carrette, T., Alderslade, P. and Seymour, J. (2002) Nematocyst and prey in two Australian cubomedusans, Chironex fleckeri and Chiropsalmus sp. Toxicon 40, 15471551.CrossRefGoogle ScholarPubMed
Carvalho-Saucedo, L., García-Domínguez, F., Rodríguez-Jaramillo, C. and López-Martínez, J. (2010) Variación lipídica en los ovocitos de la medusa Stomolophus meleagris (Scyphozoa. Rhizostomeae), durante el desarrollo gonádico, en la laguna Las Guásimas, Sonora, México. Revista de Biología Tropical 58, 119130.Google Scholar
Carvalho-Saucedo, L., López-Martínez, J. and García-Domínguez, F. (2012) Fecundidad de la medusa Stomolophus meleagris (Rhizostomeae: Stomolophidae) en el Golfo de California. Revista de Biología Tropical 60, 17211729.Google Scholar
Chao, A., Colwell, R.K., Lin, C.W. and Gotelli, N.J. (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology 90, 11251133.Google Scholar
Colwell, R.K. (2013) EstimateS: Statistical estimation of species richness and shared species from samples. Ver. 9. http://purl.oclc.org/estimates Google Scholar
Conway, D.V.P. (2012) Marine zooplankton of southern Britain. Part 1: Radiolaria, Heliozoa, Foraminifera, Ciliophora, Cnidaria, Ctenophora, Platyhelminthes, Nemertea, Rotifera and Mollusca. In John, A.W.G. (ed.) Occasional publications. Plymouth: Marine Biological Association of the United Kingdom, p. 25.Google Scholar
Cortés, E. (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.Google Scholar
Costello, J.H. and Colin, S.P. (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita . Marine Biology 121, 327334.Google Scholar
Costello, J.H. and Colin, S.P. (1995) Flow and feeding by swimming scyphomedusae. Marine Biology 124, 399406.Google Scholar
Costello, J.H., Colin, S.P. and Dabiri, J.O. (2008) The medusan morphospace: phylogenetic constraints, biomechanical solutions and ecological consequences. Invertebrate Biology 127, 265290.Google Scholar
D'Ambra, I., Costello, J.H. and Bentivegna, F. (2001) Flow and prey capture by the scyphomedusa Phyllorhiza punctata von Ledenfeld, 1884. Hydrobiologia 451, 223227.Google Scholar
Das, P., Mandal, S., Bhagabati, S.K., Akhtar, M.S. and Singh, S.K. (2014) Important live food organisms and their role in aquaculture. Frontiers in Aquaculture 5, 6986.Google Scholar
Doyle, T.K., De Haas, H., Cotton, D., Dorschel, B., Cummins, V., Houghton, J.D.R., Davenport, J. and Hays, G.C. (2008) Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters. Journal of Plankton Research 30, 963968.Google Scholar
Doyle, T.K., Hays, G.C., Harrod, C. and Houghton, J.D.R. (2014) Ecological and societal benefits of jellyfish. In Lucas, C.H. and Pitt, K.A. (eds) Jellyfish blooms. Berlin: Springer, pp. 105127.Google Scholar
Evjemo, J.O., Reitan, K.I. and Olsen, Y. (2003) Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture 227, 191210.Google Scholar
Fancett, M.S. and Jenkins, G.P. (1988) Predatory impact of scyphomedusae on ichthyoplankton and other zooplankton in Port Philip Bay. Journal of Experimental Marine Biology and Ecology 116, 6377.Google Scholar
Galil, B. (2007) Seeing red: alien species along the Mediterranean coast of Israel. Aquatic Invasions 2, 281312.Google Scholar
García, J. and Durbin, E. (1993) Zooplanktivorous predation by large scyphomedusae Phyllorhiza punctata (Cnidaria: Scyphozoa) in Laguna Joyuda. Journal of Experimental Marine Biology and Ecology 173, 7193.Google Scholar
Gerritsen, J. and Strickler, J.R. (1977) Encounter probabilities and community structure in zooplankton: a mathematical model. Journal of the Fisheries Research Board of Canada 34, 7382.Google Scholar
Gibbons, M.J., Stuart, V. and Verheye, H.M. (1992) Trophic ecology of carnivorous zooplankton in the Benguela. South African Journal of Marine Science 12, 421437.Google Scholar
Gómez-Aguirre, S. (1991) Larva éfira y diferenciación de Stomolophus meleagris (Scyphozoa: Rhizostomeae) en plancton de lagunas costeras de Tabasco, México. Anales del Instituto de Biología UNAM, Serie Zoología 62, 383389.Google Scholar
Graham, W.M. and Kroutil, R.M. (2001) Size-based prey selectivity and dietary shifts in the jellyfish, Aurelia aurita . Journal of Plankton Research 23, 6774.CrossRefGoogle Scholar
Graham, W.M., Martin, D.L., Felder, D.L., Asper, V.L. and Perry, H.M. (2003) Ecological and economic implications of a tropical jellyfish invader in the Gulf of Mexico. Biological Invasions 5, 5369.Google Scholar
Hacunda, J.S. (1981) Trophic relationships among demersal fishes in a coastal area of the Gulf of Maine. Fishery Bulletin 79, 775788.Google Scholar
Harris, R.P., Weibe, P.H., Lenz, J., Skjodal, H.R. and Huntley, M. (eds) (2000) ICES zooplankton methodology manual. San Diego, CA: Academic Press.Google Scholar
Higgins, J.E., Ford, M.D. and Costello, J.H. (2008) Transitions in morphology, nematocyst distribution, fluid motions, and prey capture during development of the scyphomedusa Cyanea capillata . Biological Bulletin 214, 2941.Google Scholar
Hong, J., He-Qin, C., Hai-Gen, X., Arreguin-Sanchez, F., Zetina-Rejon, M.J., Luna, P.D.M. and Le Quesne, W.J.F. (2008) Trophic controls of jellyfish blooms and links with fisheries in the East China Sea. Ecological Modeling 212, 492503.Google Scholar
Horn, H. (1966) Measurement of “‘overlap”’ in comparative ecological studies. American Naturalist 100, 419424.Google Scholar
Hyslop, E.J. (1980) Stomach contents analysis: a review of methods and their application. Journal of Fish Biology 17, 411429.Google Scholar
Jiménez-Valverde, A. and Hortal, J. (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8, 151161.Google Scholar
Kanagaraj, G., Ezhilarasan, P., Sampathkumar, P., Morandini, A.C. and Sivakumar, V.P. (2011) Field and laboratory observations on predation and prey selectivity of the scyphomedusa Chrysaora cf. caliparea in southeast Indian waters. Journal of Ocean University of China 10, 4754.Google Scholar
Kitamura, M. and Omori, M. (2010) Synopsis of edible jellyfishes collected from Southeast Asia, with notes on jellyfish fisheries. Plankton Benthos Research 5, 106118.Google Scholar
Kramp, P.L. (1961) Synopsis of the medusae of the world. Journal of the Marine Biological Association of the United Kingdom 40, 7469.Google Scholar
Krebs, C.J. (1999) Ecological methodology. 2nd edition. Menlo Park, CA: Benjamin Cummings.Google Scholar
Langton, R.W. (1982) Diet overlap between the Atlantic cod Gadus morhua, silver hake Merluccius bilinearis and fifteen other northwest Atlantic finfish. Fishery Bulletin 80, 745759.Google Scholar
Larson, R.J. (1986) The feeding and growth of the sea nettle, Chrysaora quinquecirrha (Desor), in the laboratory. Estuaries 9, 376379.Google Scholar
Larson, R.J. (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter-feeding scyphomedusa from the NE Gulf of Mexico. Estuarine, Coastal and Shelf Science 32, 511525.Google Scholar
López-Martínez, J. and Álvarez-Tello, F.J. (2013) The jellyfish fishery in Mexico. Agricultural Sciences 4(6A), 5761.CrossRefGoogle Scholar
McDonald, J.H. (2014) Handbook of biological statistics. 3rd edition. Baltimore, MD: Sparky House Publishing.Google Scholar
Mianzan, H.W. and Cornelius, P.F.S. (1999) Cubomedusae and Scyphomedusae. In Boltovskoy, D. (ed.) South Atlantic Zooplankton. 1. Leiden: Backhuys Press, pp. 513559.Google Scholar
Nagata, R.M., Haddad, M.A. and Nogueira, M. (2009) The nuisance of medusae (Cnidaria, Medusozoa) to shrimp trawls in central part of southern Brazilian Bight, from the perspective of artisanal fishermen. Pan-American Journal of Aquatic Sciences 4, 312325.Google Scholar
Nogueira-Júnior, M. and Haddad, M.A. (2008) The diet of cubomedusae (Cnidaria: Cubozoa) in southern Brazil. Brazilian Journal of Oceanography 56, 157164.Google Scholar
Ocaña-Luna, A. and Gómez-Aguirre, S. (1999) Stomolophus meleagris (Scyphozoa: Rhizostomeae) in two coastal lagoons of Oaxaca, Mexico. Anales del Instituto de Biología UNAM Serie Zoología 70, 7177.Google Scholar
Olesen, N.J., Frandsen, K. and Riisgård, H.U. (1994) Population dynamics, growth and energetics of jellyfish Aurelia aurita in a shallow fjord. Marine Ecology Progress Series 105, 918.Google Scholar
Omori, M. and Nakano, E. (2001) Jellyfish fisheries in Southeast Asia. Hydrobiologia 451, 1926.Google Scholar
Padilla-Serrato, J.G., López-Martínez, J., Acevedo-Cervantes, A., Alcántara-Razo, E. and Rábago-Quiroz, C.H. (2013) Feeding of the scyphomedusa Stomolophus meleagris in the coastal lagoon Las Guásimas, northwest Mexico. Hidrobiológica 23, 218226.Google Scholar
Palomares-García, R., Suárez, E. and Hernández-Trujillo, S. (1998) Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. La Paz, B.C.S., Mexico: CICIMAR- ECOSUR.Google Scholar
Peach, M.B. and Pitt, K.A. (2005) Morphology of the nematocysts of the medusae of two scyphozoans, Catostylus mosaicus and Phyllorhiza punctata (Rhizostomeae): implications for capture of prey. Invertebrate Biology 124, 98108.Google Scholar
Pearre, S. (1982) Estimating prey preference by predators: uses of various indices and a proposal of another based on χ 2 . Canadian Journal of Fisheries and Aquatic Sciences 39, 914923.Google Scholar
Pinkas, L., Oliphant, M.S. and Iverson, L.R. (1971) Food habits of albacore, bluefin tuna, and bonito in California waters. Fishery Bulletin 152, 1105.Google Scholar
Puente-Tapia, F.A. (2009) Distribución en México de Stomolophus meleagris L. Agassiz, 1862 (Cnidaria: Scyphozoa: Rhizostomeae) y aspectos poblacionales en algunos sistemas estuarino-lagunares . Professional thesis. Universidad Nacional Autónoma de México.Google Scholar
Purcell, J.E. (1997) Pelagic cnidarians and ctenophores as predators: selective predation, feeding rates, and effects on prey populations. Annales de l'Institute Oceanographique 72, 125137.Google Scholar
Purcell, J.E. (2003) Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Marine Ecology Progress Series 246, 137152.Google Scholar
Purcell, J.E., Nemazie, D.A., Dorsey, S.E., Houde, E.D. and Gamble, J.C. (1994) Predation mortality of bay anchovy (Anchoa mitchilli) eggs and larvae due to scyphomedusae and ctenophores in Chesapeake Bay. Marine Ecology Progress Series 114, 4758.Google Scholar
Purcell, J.E. and Sturdevant, M.V. (2001) Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology Progress Series 210, 6783.Google Scholar
Quiñones, J., Monroy, A., Acha, E.M. and Mianzan, H.W. (2013) Jellyfish bycatch diminishes profit in an anchovy fishery off Peru. Fisheries Research 139, 4750.Google Scholar
Riascos, J.M., Villegas, V. and Pacheco, A.S. (2014) Diet composition of the large scyphozoan jellyfish Chrysaora plocamia in a highly productive upwelling centre off northern Chile. Marine Biology Research 10, 791798.Google Scholar
Smith, D.L. and Johnson, K.B. (1996) A guide to marine coastal plankton and marine invertebrate larvae. Dubuque, IA: Kendall-Hunt Publishing. Google Scholar
Smith, P.E. and Richardson, S.L. (1979) Standard techniques for pelagic fish eggs and larvae surveys. Miami, FL: FAO Fisheries, Technical Paper 175.Google Scholar
Sullivan, B.K., Garcia, R.J. and McPhee-Klein, G. (1994) Prey selection by the scyphomedusan predator Aurelia aurita . Marine Biology 121, 335341.Google Scholar
Toonen, R.J. and Chia, F.S. (1993) Limitations of laboratory assessments of coelenterate predation: container effects on the prey selection of the Limnomedusa, Proboscidactyla flavicirrata (Brandt). Journal of Experimental Marine Biology and Ecology 167, 215223.Google Scholar
Wolda, H. (1981) Similarity indices, sample size and diversity. OecoIogia (Berl) 50, 296302.Google Scholar