Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T10:00:34.043Z Has data issue: false hasContentIssue false

The Ultrastructure of the Heart-Body and Extravasal Tissue in the Polychaete Annelids Neoamphitrite Figulus and Arenicola Marina

Published online by Cambridge University Press:  11 May 2009

T. Braunbeck
Affiliation:
Universität Heidelberg, Zoologisches Institut Morphologie/Ökologie, Im Neuenheimer Feld 230, D-6900 Heidelberg, W. Germany
R. P. Dales
Affiliation:
Department of Zoology, Bedford College, Egham, Surrey TW20 9TY

Extract

The heart-body in Neoamphitrite figulus (Dalyell) forms a mass of tissue within the supra-oesophageal vessel almost occluding the lumen. The tissue forms a much-infolded cylinder enclosed by a basal lamina consisting of a fibrous reticulum through which the assembled haemoglobin molecules are discharged into the plasma (Dales & Pell, 1970). A function of both the heart-body and the extravasal (‘chloragogen’) tissue in polychaetes without a heart-body was established by biochemical analysis (Kennedy & Dales, 1958; Dales, 1963, 1965) to be the synthesis of plasma haemoglobin (erythrocruorin) or chlorocruorin. This was confirmed by electron microscopy (TEM) by Breton-Gorius (1963) in Arenicola, Potswald (1969) in Spirorbis, Dales & Pell (1970) in Neoamphitrite, Lattice, Myxicola, Megalomma and Sabella, and by Friedmann & Weiss (1980) in Amphitrite. It would appear that the same tissues also sequester phagocytosed materials (Braunbeck & Dales, 1984). Re-examination of this tissue by trans-mission electron microscopy (TEM) has extended our knowledge of the ultra-structure. Here we discuss these results in relation to the function of these tissues in the production of the respiratory pigments found in the plasma. Some heart-bodies of Terebella lapidaria L., Lattice conchilega (Pallas) and Cirriformia tentaculata (Montagu) have also been examined by TEM for comparison with that of Neoamphitrite figulus.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barthlott, W. & Schill, R., 1981. Oberfläch euskulpturen bei Hoheren Ppflanzen. Progress of Botany, 43, 2738.Google Scholar
Braunbeck, T. & Dales, R. P., 1984. The role of the heart-body and extravasal tissue in the disposal of foreign cells in Neoamphitrite figulus (Dalyell) and Arenicola marina (L.) (Annelida: Polychaeta). Tissue and Cell, 16, 557563.CrossRefGoogle Scholar
Breton-Gorius, J., 1963. Etude au microscope électronique des cellule chloragogènes d'Arenicola marina L. Leur rôle dans le synthèse de l'hémoglobine. Annales des sciences naturelles (Zoologie), 5, 211272.Google Scholar
Dales, R. P., 1963. Accumulation of haematins by polychaetes. Nature, London, 197, 1302.CrossRefGoogle Scholar
Dales, R. P., 1965. Iron compounds in the heart-body of the terebellid polychaete Neoamphitrite figulus. Journal of the Marine Biological Association of the United Kingdom, 45, 341351.CrossRefGoogle Scholar
Dales, R. P. & Pell, J., 1970. Cytological aspects of haemoglobin and chlorocruorin synthesis in polychaete annelids. Zeitschrift für Zellforschung und mikroskopische Anatomie, 109, 3032.CrossRefGoogle ScholarPubMed
Friedmann, M. M. & Weiss, L., 1980. An electron microscopic study of haemoglobin synthesis in the marine annelid Amphitrite ornata (Polychaeta: Terebellidae). Journal of Morphology, 164, 121138.CrossRefGoogle Scholar
Hanson, J., 1949. The histology of the blood system in Oligochaeta and Polychaeta. Biological Reviews, 24, 127173.CrossRefGoogle ScholarPubMed
Kennedy, G. Y. & Dales, R. P., 1958. The function of the heart-body in polychaetes. Journal of the Marine Biological Association of the United Kingdom, 37, 1431.CrossRefGoogle Scholar
Lockwood, W. R., 1964. A reliable and easily sectioned epoxy embedding medium (TAAB). Anatomical Record, 150, 129140.CrossRefGoogle Scholar
Magnum, C. P. & Dales, R. P., 1965. Products of haem synthesis in polychaetes. Comparative Biochemistry and Physiology, 15, 237257.Google Scholar
Potswald, H. E., 1969. Cytological observations on the so-called neoblasts in the serpulid Spirorbis. Journal of Morphology, 128, 241260.CrossRefGoogle Scholar
Reynolds, E. S., 1963. The use of lead citrate at high pH as an electron opaque stain in electron microscopy. Journal of Cell Biology, 17, 208212.CrossRefGoogle ScholarPubMed
Salensky, W., 1884. Etudes sur le developpement des Annelides. Part III. Pileolaria, Aricia and Terebella. Archives de biologie, 4, 143264.Google Scholar
Spurr, A. R. 1969. A low viscosity embedding medium for electron microscopy with heavy metals. II. Applications of solutions containing lead and barium. Journal of Biop hysical and Biochemical Cytology, 4, 727729.Google Scholar
Watson, M. L., 1958. Staining of tissue sections for electron microscopy with heavy metals. II. Applications of solutions containing lead and barium. Journal of Biophysical and Biochemical Cytology, 4, 727729.CrossRefGoogle ScholarPubMed
Welsch, U. & Storch, V., 1976. Comparative Animal Cytology and Histology. London: Sidgwick & Jackson.Google Scholar