Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-06T03:32:15.616Z Has data issue: false hasContentIssue false

On the mathematical theory of risk

Published online by Cambridge University Press:  11 August 2014

Eugene Lukacs*
Affiliation:
Cincinnati, Ohio
Get access

Extract

Although the first essay on the theory of risk (41) was published in 1786, this theory has been for the most part developed during this century. Moreover, the original presentation was rather difficult and the formulae inconvenient for the practical computer. Only recently has the classical theory of risk attained a satisfactory and seemingly final form. Few text-books, none of them in the English language, discuss these developments; it may therefore be useful to give an exposition of these results. As a rule no proofs will be given, instead reference will be made to the relevant literature.

This survey will be restricted to the classical theory of risk, which deals essentially with the individual insurance. It is possible to approach the problem of risk from an entirely different angle, considering not the individual insurance but all the policies in force. This leads to the collective theory of risk (27, 29, 15, 40), which is based upon the theory of homogeneous random processes. Only the classical theory will be considered here, the inclusion of the collective theory of risk would considerably extend the scope of this paper, and in any case many of the relevant papers are in English.

Type
Research Article
Copyright
Copyright © Institute of Actuaries Students' Society 1948

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1) Berger, A. (1925). Die Prinzipien der Lebensversicherungstechnik, Teil II. Berlin.CrossRefGoogle Scholar
(2) Berger, A. (1928). Zur Theorie des durchschnittlichen Risikos. Bl.f.Vers. Math. Vol. I, pp. 1628.Google Scholar
(3) Berger, A. (1937). Das durchschnittliche Risiko als Maximum des Erwartungswertes. Bl.f. Vers. Math. Vol. IV, pp. 7795.Google Scholar
(4) Berger, A. (1939). Der Verschiebungssatz der Versicherungsmathematik. Monatsh. Math. Phys. Vol. XLVII, pp. 419425.CrossRefGoogle Scholar
(5) Berger, A. (1939). Mathematik der Lebensversicherung, chap. VIII. Wien.CrossRefGoogle Scholar
(6) Berger, A. (1940). Welche Hypothesen liegen der Versicherungsmathematik zugrunde und wie kann die Anwendung der Wahrscheinlichkeitstheorie und der Risikotheorie im Versicherungswesen begründet werden? Trans. Twelfth Intern. Congress of Actuar. Vol. IV, pp. 922. Lucerne.Google Scholar
(7) Bohlmann, G. (1901). Lebensversicherungs-Mathematik. Encykl. d. math. Wiss. Vol. 1, pt. 2 (ID 4b), pp. 902917.Google Scholar
(8) Bohlmann, G. (1902). Ein Satz von Wittstein über das durchschnittliche Risiko. Mitt. Verb. öst.-ung. Vers. Techn. Vol. VII, pp. 34.Google Scholar
(9) Bohlmann, G. (1909). Die Theorie des mittleren Risikos in der Lebensversicherung. Trans. Sixth Intern. Congress of Actuar. Vol. I, pp. 593683. Wien.Google Scholar
(10) Bonferroni, C. E. (1926). Sui rischi lineari successivi. R. Ist. Sup. di Sc. Ec. Comm. Bari, pp. 19.Google Scholar
(11) Broggi, U. (1906). Matematica Attuariale. Milano. (German edition, Leipzig, 1911. French edition, Paris, 1907.)Google Scholar
(12) Camp, K. (1934). Discussion on Piper's paper, Trans. Act. Soc. America, Vol. xxxv, pp. 102103.Google Scholar
(13) Cantelli, F. P. (1929). Un teorema sulle variabili casuali dipendenti che assorbe il teorema di Hattendorf nella teoria del rischio. Rivista Italiana di Statistics, Vol. I, pp. 352357.Google Scholar
(14) Cantelli, F. P. (1930). Un teorema sulle variabili casuali dependenti che assorbe il teorema di Hattendorf nella teoria del rischio. Atti Soc. Ital. progresso del Sci. 18a riunione, Vol. II, pp. 149153.Google Scholar
(15) Cramér, H. (1930). On the mathematical theory of risk. In Vol. II of Minneskrift utgiven av Forsäkringsaktiebolaget Skandia. Stockholm.Google Scholar
(16) Cramér, H. (1930). The theory of risk in its application to life insurance problems. Proc. Ninth Intern. Congress Actuar. Vol. II, pp. 380390. Stockholm.Google Scholar
(17) Czuber, E. (1938). Wahrscheinlichkeitsrechnung, Vol. II (4th ed.), pp. 408440.Google Scholar
(18) Frisch, R. (1924). Solution d'un problème du calcul des probabilités. Skandinavisk Aktuarietidskrift, Vol. VII, pp. 153174.Google Scholar
(19) Gruder, O. (1930). Zur Theorie des Risikos. Ninth Intern. Congr. Actuar. Vol. III, pp. 222247. Stockholm.Google Scholar
(20) Guldberg, A. (1909). Zur Theorie des Risikos. Sixth Intern. Congr. Actuar. Vol. I/1, pp. 753764. Wien.Google Scholar
(21) Hattendorf, K. (1868). Über die Berechnung der Reserven und des Risikos bei der Lebensversicherung. Masius' Rundschau der Vers. Vol. XVIII, pp. 1, 25, 145, 169.Google Scholar
(22) Hausdohff, F. (1897). Das Risiko bei Zufallsspielen. Ber. Akad. Wiss. Leipzig, Math. Phys. Kl. pp. 497548.Google Scholar
(23) Landré, C. (1899). Aperçu succinct des théories du plein de l'assurance. Second Intern. Congr. Actuar. Vol. I, pp. 110122. London.Google Scholar
(24) Laurent, H. (1873). Determination des pleins qu'un assureur peut garder sur les risques qu'il garantit. Journal des actuaires français, Vol. II, pp. 79–90, 161165.Google Scholar
(25) Laurent, H. (1873). Traité des probabilités, pp. 247 ff. Paris.Google Scholar
(26) Laurent, H. (1895). Théorie et pratique des assurances sur la vie, pp. 116123. Paris.Google Scholar
(27) Laurin, I. (1930). An introduction into Lundberg's theory of risk. Skand. Aktuar. Tidskr. Vol. VIII, pp. 84111.Google Scholar
(28) Lenzi, E. (1927). Sul rischio matematico di assicurazioni singole. Giomale di Matematica Finanziaria, Vol. IX, pp. 164172.Google Scholar
(29) Lundberg, F. (1930). Über die Wahrscheinlichkeitsfunktion einer Riskenmasse. Skand. Aktuar. Tidskr. Vol. XIII, pp. 183.Google Scholar
(30) Lukacs, E. (1940). The theory of mean risk founded on the theory of probability. Twelfth Intern. Congr. Act. Vol. I, pp. 171205. Lucerne.Google Scholar
(31) Meidell, B. (1912). Zur Theorie des Maximums. Seventh Intern. Congr. Actuar. pp. 8599. Amsterdam.Google Scholar
(32) Meidell, B. (1937). Zur Theorie und Praxis des Maximums in der Lebensversicherung. Eleventh Intern. Congr. Actuar. p. 469. Paris.Google Scholar
(33) Menge, W. O. (1937). A statistical treatment of actuarial functions. Record. Amer. Inst. Actuar. Vol. XXVI, pp. 6588.Google Scholar
(34) Peek, J. H. (1902). Über eine rationelle Methode zur Berechnung des Zuschlages. Zeitschr. ges. Vers.-Wiss. Vol. II, pp. 825.Google Scholar
(35) Peek, J. H. (1904). On a rational method of loading. Fourth Intern. Congr. Actuar. Vol. I, pp. 434451. New York.Google Scholar
(36) Poincaré, H. (1912). Calcul des Probabilités, p. 81. Paris.Google Scholar
(37) Radtke, P. (1903). Die Stabilität der Lebensversicherungs-Anstalten. Ztschr. ges. Vers. Wiss. Vol. III, pp. 399459.Google Scholar
(38) Rietz, H. L. (1910). Mathematical theory of risk and Landré's theory of the maximum. Record Amer. Inst. Actuar. Vol. II, pp. 114.Google Scholar
(39) Steffensen, J. F. (1929). On Hattendorf's theorem in the theory of risk. Skand. Aktuar. Tidskr. Vol. XIII, pp. 117.Google Scholar
(40) Segerdahl., C.-O. (1939). On Homogeneous Random Processes and Collective Risk Theory. Uppsala.Google Scholar
(41) Tetens, J. N. (1786). Einleitung zur Berechnung der Leibrenten und Anwartschaften, Vol. II.Google Scholar
(42) Tauber, A. (1909). Über Risiko und Sicherheitszuschlag. Sixth Int. Congr. Actuar. Vol. I/2, pp. 781842. Wien.Google Scholar
(43) Vajda, S. (1929). Über das Äquivalenzprinzip. Bl. f. Vers.-Math. vol. I, pp. 195200.Google Scholar
(44) Vajda, S. (1933). Wahrscheinlichkeitstheoretische Grundlegung der Versicherungsmathematik. Assekuranz Jahrbuch, Vol. LII, pp. 176191.Google Scholar
(45) Vajda, S. (1940). The extended mortality table and its application in the theory of probabilities. Twelfth Intern. Congr. Act. Vol. I, pp. 241251. Lucerne.Google Scholar
(46) Wagner, K. (1898). Das Problem vom Risiko in der Lebensversicherung.Google Scholar