Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T06:59:29.883Z Has data issue: false hasContentIssue false

Is competition with livestock detrimental for native wild ungulates? A case study of chital (Axis axis) in Gir Forest, India

Published online by Cambridge University Press:  10 March 2011

Chittaranjan Dave*
Affiliation:
Dept of Animal Ecology & Conservation Biology, Wildlife Institute of India, PO Box 18, Dehradun 248001, India
Yadvendradev Jhala
Affiliation:
Dept of Animal Ecology & Conservation Biology, Wildlife Institute of India, PO Box 18, Dehradun 248001, India
*
1Corresponding author. Email: cvdave@yahoo.co.uk

Abstract:

Livestock graze Indian forests to varying extents but their impact on wild native ungulates is rarely understood. Negative impacts of sympatric livestock on chital (Axis axis) demography and food availability were assessed and compared in the Gir Forest, India, at different spatio-temporal scales. No difference in average group size (mean ± SE) (7.11 ± 0.8 indiv.) (short-term response), fawn to doe ratio (0.43 ± 0.03) (short- to medium-term response), chital density (44.8 ± 7.1 indiv. km−2) (medium- to long-term response), and rate of population increase (r = 0.07 ± 0.014) (long-term response) was found between areas sympatric and livestock-free at the larger spatial scale of Gir Forest. Instead, chital density was correlated with rainfall (r = 0.92). After controlling for confounding factors of rainfall, vegetation community, terrain and lion density, chital density was 62% higher for livestock-free compared with sympatric areas but other demographic parameters showed no statistical difference. Peak above-ground biomass was greater in livestock-free (3255 ± 209 kg ha−1) compared to sympatric areas (1438 ± 152 kg ha−1), but chital food was more abundant in moderately grazed areas compared to livestock-free areas. Overall, long-term livestock grazing has depressive effects on chital but in the short term habitat productivity and suitability overrides the depressive effects of sympatric livestock.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALLCOCK, K. G. & HIK, D. S. 2003. What determines disturbance-productivity-diversity relationships? The effect of scale, species and environment on richness patterns in an Australian woodland. Oikos 102:173185.CrossRefGoogle Scholar
BEAUCHAMP, G. 2003. Group size effects on vigilance: a search for mechanisms. Behavioural Processes 63:111121.CrossRefGoogle ScholarPubMed
BEDNEKOFF, P. A. & LIMA, S. L. 2004. Risk allocation and competition in foraging groups: reversed effects of competition if group size varies under risk of predation. Proceedings of the Royal Society, Biology Letters 271:14911496.CrossRefGoogle ScholarPubMed
BEEBE, J., EVERETTE, R., SCHERER, G. & DAVIS, C. 2002. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington. Research Paper PNW-RP-542, Pacific Northwest Research Station, Forest Service, United States Deptartment of Agriculture, Washington, DC. 15 pp.CrossRefGoogle Scholar
BERRY, K. J. & MIELKE, P. W. 1983. Computation of finite population parameters and approximate probability values for multi-response permutation processes (MRPP). Communication in Statistics – Simulation and Computation 12:83107.Google Scholar
BERWICK, S. 1974. The community of wild ruminants in Gir ecosystem. PhD thesis, Yale University, Connecticut. 225 pp.Google Scholar
BERWICK, S. H. & JORDAN, P. A. 1971. First report of Yale–Bombay Natural History Society studies of wild ungulates at the Gir Forest, Gujarat, India. Journal of Bombay Natural History Society 68:412423.Google Scholar
BROCHU, L., CARON, L. & BERGERON, J. M. 1988. Diet quality and body condition of dispersing and resident voles (Microtus pennsylvanicus). Journal of Mammalogy 69:704710.CrossRefGoogle Scholar
BUCKLAND, S. T., ANDERSON, A. R., BURNHAM, K. P. & LAAKE, J. L. 1993. Distance sampling: estimating abundance of biological populations. Chapman and Hall, London. 446 pp.Google Scholar
BUGMANN, H. & WEISBERG, P. 2003. Forest ungulate interactions: monitoring, modeling and management. Journal of Nature Conservation 10:193201.CrossRefGoogle Scholar
BURNHAM, K. P., ANDERSON, D. R. & LAAKE, J. L. 1980. Estimation of density from line transect sampling of biological populations. Wildlife Monograph 72:1202.Google Scholar
CADE, B. S. & RICHARDS, J. D. 2005. User manual for BLOSSOM statistical software. USGS, Fort Collins Science Center, Reston. 124 pp.Google Scholar
CAUGHLEY, G. 1977. Analysis of vertebrate populations. (First edition). John Wiley & Sons, Chichester. 234 pp.Google Scholar
CHAMPION, H. & SETH, S. 1968. A revised study of the forest types of India. Government of India Press, New Delhi. 404 pp.Google Scholar
CHELLAM, R. 1993. Ecology of Asiatic lion (Panthera leo persica). PhD thesis, Saurashtra University, Rajkot, India. 170 pp.Google Scholar
CLUTTON-BROCK, T. H., ILLIUS, A. W., WILSON, K., GRENFELL, B. T., MACCOLL, A. D. C. & ALBON, S. D. 1997. Stability and instability in ungulate populations: an empirical analysis. American Naturalist 149:195219.Google Scholar
COE, N. J., CUMMING, D. H. & PHILLIPSON, J. 1976. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia (Berlin) 22:341354.CrossRefGoogle ScholarPubMed
CUMMING, D. H. M. & CUMMING, G. S. 2003. Ungulate community structure and ecological processes: body size, hoof area and trampling in African savannas. Oecologia 134:560568.Google Scholar
DAVE, C. V. 2008. Ecology of chital (Axis axis) in Gir. PhD thesis, Saurashtra University, Rajkot, India. 263 pp.Google Scholar
DRAPER, N. & SMITH, H. 1981. Applied regression analysis. (Second edition). John Wiley & Sons, New York. 407 pp.Google Scholar
DUBLIN, H. T., SINCLAIR, A. R. E., BOUTIN, S., ANDERSON, M. & ARCESE, P. 1990. Does competition regulate ungulate populations’? Further evidence from Serengeti. Tanzania. Oecologia (Berlin) 82:283288.CrossRefGoogle ScholarPubMed
FLEISCHNER, T. L. 1994. Ecological costs of livestock grazing in western North America. Conservation Biology 8:629644.Google Scholar
GOYAL, S. P., MUKHERJEE, S., QURESHI, Q., SANKAR, K., SHAH, N., DAVE, C. & ZALA, Y. P. 2004. Monitoring ungulates (relative abundance and density estimation). Pp. 1535 in Jhala, Y. V. (ed.). Monitoring of Gir. Wildlife Institute of India, Dehradun.Google Scholar
GWYNE, M. & BELL, R. H. V. 1968. Selection of grazing components by grazing ungulates in the Serengeti National Park. Nature 220:390393.Google Scholar
HARRINGTON, R. A., FOWNES, J. H., MEINZER, F. C. & SCOWCROFT, P. G. 1995. Forest growth along a rainfall gradient in Hawaii: Acacia koa stand structure, productivity, foliar nutrients, and water and nutrient use efficiencies. Oecologia (Berlin) 102:277284.Google Scholar
HOBBS, N. T. & SEARLE, K. R. 2005. A reanalysis of the body mass scaling of trampling by large herbivores. Oecologia 145:462464.CrossRefGoogle ScholarPubMed
HOBBS, N. T., BAKER, D. L., BEAR, G. D. & BOWDEN, D. C. 1996. Ungulate grazing in sagebrush grassland: mechanisms of resource competition. Ecological Applications 6:200217.Google Scholar
HOFMANN, R. R. 1985. Digestive physiology of the deer – their morphophysiological specialisation and adaption. Pp. 393407 in Fennessy, P. F. & Drew, K. R. (eds.). Biology of deer production. The Royal Society New Zealand Bulletin 22, Wellington.Google Scholar
ILLIUS, A. W. & O'CONNOR, T. G. 2000. Resource heterogeneity and ungulate population dynamics. Oikos 89:283294.Google Scholar
JARMAN, P. J. 1974. The social organization of antelope in relation to their ecology. Behaviour 48:215267.Google Scholar
JHALA, Y. V., CHELLAM, R., QURESHI, Q., PATHAK, B., MEENA, V., DAVE, C., CHAUHAN, K. & BANNERJEE, K. 2006. Social organization and dispersal of Asiatic lions and ecological monitoring of Gir. Technical Report. Wildlife Institute of India, Dehradun. 100 pp.Google Scholar
JOSLIN, P. 1973. Asiatic lion: a study of ecology and behaviour. PhD thesis. University of Edinburgh. 249 pp.Google Scholar
KHAN, J. A. 1995. Conservation and management of Gir Lion Sanctuary and National Park, Gujarat, India. Biological Conservation 73:183188.Google Scholar
KHAN, J. A., CHELLAM, R., RODGERS, W. A. & JOHNSINGH, A. J. T. 1996. Ungulate density and biomass in the tropical dry deciduous forests of Gir, Gujarat, India. Journal of Tropical Ecology 12:149162.Google Scholar
KOTHARI, A., PANDE, P., SINGH, S. & VARIAVA, D. 1989. Management of National Parks and Wildlife Sanctuaries in India. A status report. Indian Institutes of Public Administration, New Delhi. 298 pp.Google Scholar
KREBS, C. J. 1989. Ecological methodology. (First edition). Harper and Row, Publishers, New York. 654 pp.Google Scholar
MADHUSUDAN, M. D. 2004. Recovery of wild large herbivores following livestock decline in a tropical Indian wildlife reserve. Journal of Applied Ecology 41:858869.Google Scholar
MANDUJANO, S. & NARANJO, E. 2010. Ungulate biomass across a rainfall gradient: a comparison of data from neotropical and palaeotropical forests and local analyses in Mexico. Journal of Tropical Ecology 26:1323.CrossRefGoogle Scholar
MCNAUGHTON, S. J. 1979. Grazing as an optimization process: grass–ungulate relationships in the Serengeti. American Naturalist 113:691703.Google Scholar
MISHRA, C., VAN WIEREN, S., KENTER, P., HEITKÖNIG, I. & PRINS, H. H. T. 2004. Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans-Himalaya. Journal of Applied Ecology 41:344354.CrossRefGoogle Scholar
OWEN-SMITH, N. 2002. Adaptive herbivore ecology: from resources to populations in variable environments. Cambridge University Press, Cambridge. 398 pp.CrossRefGoogle Scholar
OWEN-SMITH, N. 2006. Demographic determination of the shape of density dependence for three African ungulate populations. Ecological Monographs 76:93109.CrossRefGoogle Scholar
PATHAK, B., PATI, B. P., KUMAR, R., KUMAR, A., RAVAL, P. P., PATEL, V. S. & RANA, V. J. 2002. Biodiversity Conservation Plan for Gir (A supplementary Management Plan, 2002–03 to 2006–07). Wildlife Circle, Junagadh. Gujarat Forest Department.Google Scholar
PICKFORD, G. D. & REID, E. H. 1948. Forage utilization on summer cattle ranges in eastern Oregon. Circular 796. United States Department of Agriculture, Washington, DC. 27 pp.Google Scholar
PRINS, H. H. T. 2000. Competition between wildlife and livestock in Africa. Pp. 5180 in Prins, H. H. T., Grootenhuis, J. G. & Dolan, T. T. (eds.). Wildlife conservation by sustainable use. Kluwer Academic Publishers, Boston.Google Scholar
PRINS, H. H. T. & OLFF, H. 1998. Species-richness of African grazer assemblages: towards a functional explanation. Pp. 449490 in Newbery, D. M., Prins, H. H. T. & Brown, N. (eds.). Dynamics of tropical communities. Blackwell Science, Oxford.Google Scholar
PUTMAN, R. J. 1996. Introduction. Pp. 110 in Putman, R. J. (ed.). Competition and resource partitioning in temperate ungulate assemblies. Wildlife Ecology and Behaviour Series. Chapman and Hall, London.Google Scholar
QURESHI, Q. & SHAH, N. 2004. Vegetation and habitat monitoring. Pp. 814 in Jhala, Y. V. (ed.). Monitoring of Gir. Wildlife Institute of India, Dehradun.Google Scholar
RANNESTAD, O. H., DANIELSEN, T., MOE, S. R. & STOKKE, S. 2006. Adjacent pastoral areas support higher densities of wild ungulates during the wet season. Journal of Tropical Ecology 22:675683.CrossRefGoogle Scholar
RIGINOS, C. & HOFFMAN, T. M. 2003. Changes in population biology of two succulent shrubs along a grazing gradient. Journal of Applied Ecology 40:615625.Google Scholar
RINEY, T. 1960. A field technique for assessing physical condition of some ungulates. Journal of Wildlife Management 24:9294.Google Scholar
ROBBINS, C. T. 1993. Wildlife feeding and nutrition. New York Academic Press, New York. 343 pp.Google Scholar
SCHOENER, T. W. 1983. Field experiments on interspecific competition. American Naturalist 122;240285.Google Scholar
SINCLAIR, A. R. E. 1977. The African buffalo: a study of resource limitations of population. University of Chicago Press, Chicago. 354 pp.Google Scholar
SINCLAIR, A. R. E. & NORTON-GRIFFITHS, M. 1982. Does competition or facilitation regulate migrant ungulate populations in the Serengeti? Oecologia (Berlin) 53:361369.Google Scholar
SINCLAIR, A. R. E., FRYXELL, J. M. & CAUGHLEY, G. 2006. Wildlife ecology, conservation, and management. (Second edition). Blackwell Publishing, Oxford. 488 pp.Google Scholar
SINGH, H. S. & KAMBOJ, R. D. 1996. Biodiversity conservation plan for Gir (A management plan for Gir Sanctuary and National Park, Part–I & II). Gujarat Forest Department, India. 247 & 157 pp.Google Scholar
SKALSKI, J. R., RYDING, K. E. & MILLSPAUGH, J. J. 2005. Wildlife demography: analysis of sex, age, and count data. Elsevier Academic Press, Burlington. 636 pp.Google Scholar
SKOGLAND, T. 1980. Comparative summer feeding strategies of arctic and alpine Rangifer. Journal of Animal Ecology 49:8198.Google Scholar
THOMAS, L., BUCKLAND, S.T., REXSTAD, E. A., LAAKE, J. L., STRINDBERG, S., HEDLEY, S. L., BISHOP, J. R. B., MARQUES, T. A. & BURNHAM, K. P. 2010. Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47:514.Google Scholar
YOUNG, T. P., PALMER, T. M. & GADD, M. E. 2005. Competition and compensation among cattle, zebras, and elephant in a semi-arid savanna in Laikipia, Kenya. Biological Conservation 121:351359.Google Scholar
ZAR, J. H. 2005. Biostatistical analysis. (Second edition: third Indian reprint). PearsonEducation (Singapore) Pte. Ltd., New Delhi. 718 pp.Google Scholar