Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T17:19:22.548Z Has data issue: false hasContentIssue false

Tree growth inference and prediction when the point of measurement changes: modelling around buttresses in tropical forests

Published online by Cambridge University Press:  01 January 2009

C. Jessica E. Metcalf*
Affiliation:
Centre for Infectious Disease Dynamics, Penn State University, State College, PA 16802, USA
James S. Clark
Affiliation:
Nicholas School of the Environment, Duke University, Durham, NC 27707, USA; Department of Biology, Duke University; Department of Statistical Science, Duke University
Deborah A. Clark
Affiliation:
Department of Biology, University of Missouri, St. Louis, Missouri, 63121-4499USA; La Selva Biological Station, Puerto Viejo de Sarapiquí, Costa Rica
*
1Corresponding author. E-mail: cjm53@psu.edu

Abstract:

Estimation of tree growth is generally based on repeated diameter measurements. A buttress at the height of measurement will lead to overestimates of tree diameter. Because buttresses grow up the trunk through time, it has become common practice to increase the height of measurement, to ensure that measurements remain above the buttress. However, tapering of the trunk means that increasing measurement height will bias estimates of diameter downward by up to 10% per m of height. This bias could affect inference concerning species differences and climate effects on tree demography and on biomass accumulation. Here we introduce a hierarchical state space method that allows formal integration of data on diameter taken at different heights and can include individual variation, temporal effects or other covariates. We illustrate our approach using species from Barro Colorado Island, Panama, and La Selva, Costa Rica. Results include trends that are consistent with some of those previously reported for climate responses and changes over time, but differ in relative magnitude. By including the full data-set and accounting for bias and variation among individuals and over time, our approach allows for quantification of climate responses and the uncertainty associated with measurements and the underlying growth process.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

CANHAM, C. D., PAPAIK, M., URIARTE, M., MCWILLIAMS, W., JENKINS, J. C. & TWERY, M. 2006. Neighbourhood analyses of canopy tree competition along environmental gradients in New England forests. Ecological Applications 16:540554.CrossRefGoogle ScholarPubMed
CASPERSEN, J. P., PACALA, S. W., JENKINS, J. C., HURTT, G. C., MOORCROFT, P. R. & BIRDSEY, R. A. 2000. Contributions of land-use history to carbon accumulation in US forests. Science 290:11481151.CrossRefGoogle ScholarPubMed
CHAVE, J., CONDIT, R., AGUILAR, S., HERNANDEZ, A., LAO, S. & PEREZ, R. 2004. Error propagation and scaling for tropical biomass estimates. Philosophical Transactions of the Royal Society of London B 359:409420.CrossRefGoogle ScholarPubMed
CLARK, D. A. 2002. Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecological Applications 12:37.CrossRefGoogle Scholar
CLARK, D. A. 2004. Sources or sinks? The responses of tropical forests to current and future climate and atmospheric composition. Philosophical Transactions of the Royal Society of London, Series B 359:477491.CrossRefGoogle ScholarPubMed
CLARK, D. A. & CLARK, D. B. 1999. Assessing the growth of tropical rain forest trees: issues for forest modelling and management. Ecological Applications 9:981997.CrossRefGoogle Scholar
CLARK, D. A., PIPER, S. C., KEELING, C. D. & CLARK, D. B. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences, USA 100:58525857.CrossRefGoogle ScholarPubMed
CLARK, D. B. & CLARK, D. A. 2006. Tree growth, mortality, physical condition, and microsite in an old-growth lowland tropical rain forest. Ecology 87:2132. http://esapubs.org/archive/ecol/E087/132/default.htmCrossRefGoogle Scholar
Clark, J. S. 2007. Models for ecological data. Princeton University Press, Princeton. 632 pp.CrossRefGoogle Scholar
CLARK, J. S. & BJORNSTAD, O. 2004. Population time series: process variability, observation errors, missing values, lags, and hidden states. Ecology 85:31403150.CrossRefGoogle Scholar
CLARK, J. S., WOLOSIN, M., DIETZE, M., IBANEZ, I., LADEAU, S.WELSH, M. & KLOEPPEL, B. 2007. Tree growth inferences and prediction from diameter censuses and ring widths. Ecological Applications 17:19421953.CrossRefGoogle ScholarPubMed
CONDIT, R., ASHTON, P. S., BAKER, P., BUNYAVEJOHEWIN, S., GUNATILEKE, S., GUNATILLEKE, N., HUBBELL, S. P., FOSTER, R. B., Itoh, A., LAFRANKIE, J. V., LEE, H. S., LOSOS, E., MANOKARAN, N., SUKUMAR, R. & YAMAKURA, T. 2000. Spatial patterns in the distribution of tropical tree species. Science 288:14141418.CrossRefGoogle ScholarPubMed
CONDIT, R., ASHTON, P., BUNYAVEJCHEWIN, S., DATTARAJA, H. S., DAVIES, S., ESUFALI, S., EWANGO, C., FOSTER, R., GUNATILLEKE, I. A. U. N, GUNATILLEKE, C. V. S., HALL, P., HARMS, K. E., HART, T., HERNANDEZ, C., HUBBELL, S., ITOH, A., KIRATIPRAYOON, S., LAFRANKIE, J., LOO DE LAO, S., MAKANA, J.-R., NOOR, M. N. S., KASSIN, A. R., RUSSON, S., SUKUMAR, R., SAMPER, C., HEBBALALU, S. S., TAN, S., THOMAS, S., VALENCIA, R., VALLEGO, M., VILLA, G. L. & ZILLION, T. 2006. The importance of demographic niches to tree diversity. Science 313:98101.CrossRefGoogle ScholarPubMed
FEELEY, K. J., WRIGHT, S. J., NUR SUPARDI, M. N., KASSIM, A. R. & DAVIES, S. J. 2007. Decelerating growth in tropical forest trees. Ecology Letters 10:461469.CrossRefGoogle ScholarPubMed
GELFAND, A. E. & SMITH, A. F. M. 1990. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85:398409.CrossRefGoogle Scholar
GILBERT, B., WRIGHT, S. J., MULLER-Landau, H. C., KITAJIMA, K. & HERNANDEZ, A. 2006. Life history trade-offs in tropical trees and lianas. Ecology 87:12811288.CrossRefGoogle ScholarPubMed
HUBBELL, S. P., FOSTER, R. B., O'BRIEN, S., WECHSLER, B., CONDIT, R.HARMS, K., WRIGHT, S. J. & LOO DE LAU, S. 1999. Light gaps, recruitment limitation and tree diversity in a Neotropical forest. Science 283:554557.CrossRefGoogle Scholar
HUBBELL, S. P., AHUMADA, J. A., CONDIT, R. & FOSTER, R. B. 2001. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research 16:S45S61.CrossRefGoogle Scholar
MULLER-LANDAU, H. C., CONDIT, R. S., CHAVE, J., THOMAS, S. C., BOHLMAN, S. A., BUNYAVEJCHEWIN, S., DAVIES, S., FOSTER, R. B., GUNATILLEKE, S., GUNATILLEKE, S., HARMS, K. E., HART, T., HUBBELL, S.P., ITOH, A., KASSIM, ABD R., LAFRANKIE, J. V., LEE, H. S., LOSOS, E., MAKANA, J.-R., OHKUBO, T., SUKUMAR, R., SUN, I., NUR SUPARDI, M. N., TAN, S., THOMPSON, J., VALENCIA, R., MUNOZ, G. V., WILLS, C., YAMAKURA, T., CHUYONG, G., DATTARAJA, H. S., ESUFALI, S., HALL, P., HERNANDEZ, C., KENFACK, D. & KIRATIPRAYOON, S. 2006. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters 9:(Online).CrossRefGoogle ScholarPubMed
SWETNAM, T. W. & LYNCH, A. M. 1993. Multicentury, regional-scale patterns of western spruce budworm outbreaks. Ecological Monographs 63:399424.CrossRefGoogle Scholar
WEBSTER, C. R. & LORIMER, C. G. 2005. Minimum opening sizes for canopy recruitment of mid-tolerant tree species: a retrospective approach. Ecological Applications 15:12451262.CrossRefGoogle Scholar
WYCKOFF, P. H. & CLARK, J. S. 2002. The relationship between growth and mortality for seven co-occurring tree species in the southern Appalachian Mountains. Journal of Ecology 90:604615.CrossRefGoogle Scholar