Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:55:42.142Z Has data issue: false hasContentIssue false

Association of vascular epiphytes with landscape units and phorophytes in humid lowland forests of Colombian Amazonia

Published online by Cambridge University Press:  10 March 2011

A. M. Benavides*
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam Corporación para Investigaciones Biológicas (CIB), Medellín
A. Vasco
Affiliation:
Institute of Systematic Botany, The New York Botanical Garden
A. J. Duque
Affiliation:
Departamento de Ciencias Forestales, Universidad Nacional de Colombia, sede Medellin
J. F. Duivenvoorden
Affiliation:
Institute for Biodiversity and Ecosystem Dynamics (IBED), Universiteit van Amsterdam
*
1Corresponding author. Email: anamaria.benavides@gmail.com

Abstract:

The species composition of vascular epiphytes and phorophytes (trees and lianas) was studied in ten 0.1-ha forest plots distributed over three landscape units (floodplains, swamps and well-drained uplands) in Colombian Amazonia. The aim was to analyse how host-preferences contributed to the patterns in epiphyte assemblages among the landscape units. In the plots 82 species (3310 plants) were holo-epiphytes, 11 species were primary hemi-epiphytes (179 plants) and 61 were secondary hemi-epiphytes (2337 plants). A total of 411 species of tree and liana were recorded as phorophytes. Detrended Correspondence Analysis and Mantel tests showed that the species composition of holo-epiphytes and secondary hemi-epiphytes differed among the landscape units. For both groups the effect of landscape unit on species composition strongly decreased after controlling for the phorophyte composition in the plots. The phorophyte composition significantly explained epiphyte composition and this effect was not removed after accounting for the effect of landscape unit. At the level of individual species, randomization tests yielded only few significant epiphyte–phorophyte associations. For 84% of the epiphyte species the average indicator of patchiness was below 1.5 demonstrating that most epiphyte individuals occurred scattered over different phorophytes. This probably hampered the analyses of host preferences for individual epiphyte species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ACKERMAN, J. D., SABAT, A. & ZIMMERMAN, J. K. 1996. Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia 106:192198.CrossRefGoogle Scholar
ANDRADE, J. L. & NOBEL, P. S. 1997. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29;261270.CrossRefGoogle Scholar
ARÉVALO, R. & BETANCUR, J. 2004. Diversidad de epífitas vasculares en cuatro bosques del sector suroriental de la Serranía de Chiribiquete, Guayana colombiana. Caldasia 26:359380.Google Scholar
ARÉVALO, R. & BETANCUR, J. 2006. Vertical distribution of vascular epiphytes in four forest types of the Serranía de Chiribiquete, Colombian Guayana. Selbyana 27:175185.Google Scholar
BARKMAN, J. J. 1958. Phytosociology and ecology of cryptogamic epiphytes. Van Gorcum, Assen. 628 pp.Google Scholar
BENAVIDES, A. M., DUQUE, A. J., DUIVENVOORDEN, J. F., VASCO, A. & CALLEJAS, R. 2005. A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity and Conservation 14:739758.CrossRefGoogle Scholar
BENAVIDES, A. M., WOLF, J. H. D. & DUIVENVOORDEN, J. F. 2006. Recovery and succession of epiphytes in upper Amazonian fallows. Journal of Tropical Ecology 22:705717.CrossRefGoogle Scholar
BENNETT, B. 1986. Patchiness, diversity, and abundance relationships of vascular epiphytes. Selbyana 9:7075.Google Scholar
BENZING, D. H. 1981. Bark surfaces and the origin and maintenance of diversity among angiosperm epiphytes: a hypothesis. Selbyana 5:248255.Google Scholar
BENZING, D. H. 1986. The vegetative basis of vascular epiphytism. Selbyana 9:2343.Google Scholar
BENZING, D. H. 1987. Vascular epiphytism: taxonomical participation and adaptative diversity. Annals of the Missouri Botanical Garden 74:183204.CrossRefGoogle Scholar
BENZING, D. H. 1990. Vascular epiphytes: general biology and related biota. Cambridge University Press, Cambridge. 354 pp.CrossRefGoogle Scholar
BURNS, K. C. 2007. Network properties of an epiphyte metacommunity. Journal of Ecology 95:11421151.CrossRefGoogle Scholar
BURNS, K. C. & DAWSON, J. 2005. Patterns in the diversity and distribution of epiphytes and vines in a New Zealand forest. Austral Ecology 30:891899.CrossRefGoogle Scholar
CALLAWAY, R. M., REINHART, K. O., MOORE, G. W., MOORE, D. J. & PENNINGS, S. C. 2002. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia 132:221230.CrossRefGoogle ScholarPubMed
CARDELUS, C., COLWELL, R. & WATKINS, J. 2006. Vascular epiphyte distribution patterns: explaining the mid-elevation richness peak. Journal of Ecology 94:144156.CrossRefGoogle Scholar
CASCANTE-MARIN, A. 2006. Establishment, reproduction and genetics of epiphytic bromeliad communities in successional montane forests, Costa Rica. Ph.D. Dissertation, Universiteit van Amsterdam. 193 pp.Google Scholar
CASCANTE-MARIN, A., VON MEIJENFELDT, N, DE LEEUW, H. M. H., WOLF, J. H. D., OOSTERMEIJER, J. G. B. & DEN NIJS, J. C. M. 2009. Dispersal limitation in epiphytic bromeliad communities in a Costa Rican fragmented montane landscape. Journal of Tropical Ecology 25:6373.CrossRefGoogle Scholar
CONDIT, R, HUBBELL, S. P., LAFRANKIE, J. V., SUKUMAR, R., MANOKARAN, N., FOSTER, R. B. & ASHTON, P. S. 1996. Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. Journal of Ecology 84:549562.CrossRefGoogle Scholar
CRAWLEY, M. J. 2007. The R book. Wiley, Chichester. 950 pp.CrossRefGoogle Scholar
DEJEAN, A., OLMSTED, I. & SNELLING, R. R. 1995. Tree-epiphyte–ant relationships in the low inundated forest of Sian Ka'an Biosphere Reserve, Quintana Roo, Mexico. Biotropica 27:5770.CrossRefGoogle Scholar
DUIVENVOORDEN, J. F. & DUQUE, A. J. 2010. Composition and diversity of northwestern Amazonian forests in a geoecological context. Pp. 360372 in Hoorn, C. & Wesselingh, F. (eds.). Amazonia — landscape and species evolution: a look in the past. Wiley–Blackwell, Chichester. 447 pp.Google Scholar
DUIVENVOORDEN, J. F. & LIPS, J. M. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. Tropenbos Foundation, Wageningen. 438 pp.Google Scholar
DUQUE, A. J., DUIVENVOORDEN, J. F., CAVELIER, J., SÁNCHEZ, M., POLANÍA, C. & LEON, A. 2005. Ferns and Melastomataceae as indicators of vascular plant composition in rain forests of Colombian Amazonia. Plant Ecology 178:113.CrossRefGoogle Scholar
DUQUE, A., PHILIPS, J. F., VON HILDEBRAND, P., POSADA, C. A., PRIETO, A., RUDAS, A., SUESCÚN, M. & STEVENSON, P. 2009. Distance decay of tree species similarity in protected areas on Tierra Firme forests in Colombian Amazonia. Biotropica 41:599607.CrossRefGoogle Scholar
ENGQVIST, L. 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour 70:967971.CrossRefGoogle Scholar
ENGWALD, S., SCHMIT-NEUERBERG, V. & BARTHLOTT, W. 2000. Epiphytes in rain forests of Venezuela – diversity and dynamics of a biocenosis. Pp. 425434 in Breckle, S. W., Schweizer, B. & Arndt, U. (eds.). Results of worldwide ecological studies. Proceedings of the 1st Symposium by the A.F.W Schimper-Foundation – from H. and E. Walter – Hoheneim, Oktober 1998.- Stuttgart-Hohenheim. Günter Heimbach, Stuttgart.Google Scholar
FISHER, R. A., CORBET, A. S. & WILLIAMS, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of animal population. Journal of Animal Ecology 7:4257.CrossRefGoogle Scholar
FLORES-PALACIOS, A. & GARCIA-FRANCO, J. G. 2001. Sampling methods for vascular epiphytes: their effectiveness in recording species richness and frequency. Selbyana 22:181191.Google Scholar
FLORES-PALACIOS, A. & GARCIA-FRANCO, J. G. 2006. The relationship between tree size and epiphyte richness: testing four different hypotheses. Journal of Biogeography 33:323330.CrossRefGoogle Scholar
FREI, J. K. & DODSON, C. H. 1972. The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bulletin of the Torrey Botanical Club 99:301307.CrossRefGoogle Scholar
FREIBERG, M. 2001. The influence of epiphyte cover on branch temperature in a tropical tree. Plant Ecology 153:241250.CrossRefGoogle Scholar
GALEANO, G., SUAREZ, S. & BALSLEV, H. 1998. Vascular species count in wet forest in the Chocó area on the Pacific coast of Colombia. Biodiversity and Conservation 7:15631575.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of Neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
GRIFFITHS, H. & SMITH, J. A. C. 1983. Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM. Oecologia 60:176184.CrossRefGoogle ScholarPubMed
HIETZ, P. & BRIONES, O. 1998. Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. Oecologia 114:305316.CrossRefGoogle Scholar
HILL, M. O. 1979. DECORANA – a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Cornell University, Ithaca. 52 pp.Google Scholar
HIRATA, A., KAMIJO, T. & SAITO, S. 2009. Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecology 201:247254.CrossRefGoogle Scholar
HOPE, A. C. A. 1968. A simplified Monte Carlo significance test procedure. Journal of the Royal Statistical Society B 30:582598.Google Scholar
JOHANSSON, R. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59:119.Google Scholar
KERNAN, C. & FOWLER, N. 1995. Differential substrate use by epiphytes in Corcovado National Park, Costa Rica: a source of guild structure. Journal of Ecology 83:6573.CrossRefGoogle Scholar
KREFT, H., KOSTER, N., KUPER, W., NIEDER, J. & BARTHLOTT, W. 2004. Diversity and biogeography of vascular epiphytes in Western Amazonia, Yasuni, Ecuador. Journal of Biogeography 31:14631476.CrossRefGoogle Scholar
LAUBE, S. & ZOTZ, G. 2006a. Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Annals of Botany 97:11031114.CrossRefGoogle Scholar
LAUBE, S. & ZOTZ, G. 2006b. Long-term changes of the vascular epiphyte assemblage on the palm Socratea exorrhiza in a lowland forest in Panama. Journal of Vegetation Science 17:307314.Google Scholar
LAUBE, S. & ZOTZ, G. 2007. A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra. Journal of Vegetation Science 18:613624.Google Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. Elsevier, Amsterdam. 870 pp.Google Scholar
LEIMBECK, R. M. & BALSLEV, H. 2001. Species richness and abundance of epiphytic Araceae on adjacent floodplain and upland forest in Amazonian Ecuador. Biodiversity and Conservation 10:15791593.CrossRefGoogle Scholar
MANLY, B. F. J. 1997. Randomization, bootstrap and Monte Carlo methods in biology (Second edition). Chapman & Hall, London. 455 pp.Google Scholar
MEHLTRETER, K., FLORES-PALACIOS, A. & GARCIA-FRANCO, J. G. 2005. Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology 21:651660.CrossRefGoogle Scholar
MIGENIS, L. E. & ACKERMAN, J. D. 1993. Orchid-phorophyte relationships in a forest watershed in Puerto Rico. Journal of Tropical Ecology 9:231240.CrossRefGoogle Scholar
MOFFETT, M. W. 2000. What's “up”? A critical look at the basic terms of canopy biology. Biotropica 32:569596.CrossRefGoogle Scholar
MUÑOZ, A., CHACON, P., PEREZ, F., BARNERT, E. S. & ARMESTO, J. J. 2003. Diversity and host tree preferences of vascular epiphytes and vines in a temperate rainforest in southern Chile. Australian Journal of Botany 51:381391.CrossRefGoogle Scholar
NIEDER, J., PROSPERI, J. & MICHALOUD, G. 2001. Epiphytes and their contribution to canopy diversity. Plant Ecology 153:5163.CrossRefGoogle Scholar
ORIHUELA, R. L. L. & WAECHTER, J. L. 2010. Host size and abundance of hemiepiphytes in a subtropical stand of Brazilian Atlantic Forest. Journal of Tropical Ecology 26:119122.CrossRefGoogle Scholar
PEÑUELA, M. C. & VON HILDEBRAND, P. 1999. Parque Nacional Natural Chiribiquete. Fundación Puerto Rastrojo – Instituto San Pablo Apóstol, Bogotá. 199 pp.Google Scholar
PHILLIPS, O. L., BAKER, T. R., ARROYO, L., HIGUCHI, N., KILLEEN, T. J., LAURANCE, W. F., LEWIS, S. L., LLOYD, J., MALHI, Y., MONTEAGUDO, A., NEILL, D. A., VARGAS, P. N., SILVA, J. N. M., TERBORGH, J., MARTINEZ, R. V., ALEXIADES, M., ALMEIDA, S., BROWN, S., CHAVE, J., COMISKEY, J. A., CZIMCZIK, C. I., DI FIORE, A., ERWIN, T., KUEBLER, C., LAURANCE, S. G., NASCIMENTO, H. E. M., OLIVIER, J., PALACIOS, W., PATINO, S., PITMAN, N. C. A., QUESADA, C. A., SALIDAS, M., LEZAMA, A. T. & VINCETI, B. 2004. Pattern and process in Amazon tree turnover, 1976–2001 Philosophical Transactions of the Royal Society of London Series B–Biological Sciences 359:381407.CrossRefGoogle ScholarPubMed
RAY, T. S. 1992. Foraging behavior in tropical herbaceous climbers (Araceae). Journal of Ecology 80:189203.CrossRefGoogle Scholar
REYES-GARCÍA, C., GRIFFITHS, H., RINCON, E. & HUANTE, P. 2008. Niche differentiation in tank and atmospheric epiphytic bromeliads of a seasonally dry forest. Biotropica 40:168175.CrossRefGoogle Scholar
SANFORD, W. W. 1968. Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology 56:697705.CrossRefGoogle Scholar
TALLEY, S. M., SETZER, W. N. & JACKES, B. R. 1996. Host associations of two adventitious-root-climbing vines in a north Queensland tropical rain forest. Biotropica 28:356366.CrossRefGoogle Scholar
TER BRAAK, C. J. K. & SMILAUER, P. 1998. CANOCO reference manual and user's guide to CANOCO for windows: software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca. 350 pp.Google Scholar
VAN DUNNÉ, H. J. F. 2001. Establishment and development of epiphytes in secondary neotropical forest. Ph.D. Dissertation, Universiteit van Amsterdam. 123 pp.Google Scholar
WOLF, J. H. D. 1993. Ecology of epiphytes and epiphyte communities in montane rain forest, Colombia. Ph.D. Dissertation, Universiteit of Amsterdam. 238 pp.Google Scholar
WOLF, J. H. D. 1994. Factors controlling the distribution of vascular and non-vascular epiphytes in the northern Andes. Vegetatio 112:1528.CrossRefGoogle Scholar
WOLF, J. H. D. 2005. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management 212:376393.CrossRefGoogle Scholar
WOLF, J. H. D., GRADSTEIN, S. R. & NADKARNI, N. M. 2009. A protocol for sampling of vascular epiphyte richness and abundance. Journal of Tropical Ecology 25:107121.CrossRefGoogle Scholar
ZOTZ, G. & HIETZ, P. 2001. The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany 52:20672078.CrossRefGoogle ScholarPubMed
ZOTZ, G. & SCHULTZ, S. 2008. The vascular epiphytes of a lowland forest in Panama — species composition and spatial structure. Plant Ecology 195:131141.CrossRefGoogle Scholar
ZOTZ, G. & VOLLRATH, B. 2003. The epiphyte vegetation of the palm Socratea exorrhiza – correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology 19:8190.CrossRefGoogle Scholar