Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-11T13:18:30.729Z Has data issue: false hasContentIssue false

Asymmetrical legitimate pollination in distylous Palicourea demissa (Rubiaceae): the role of nectar production and pollinator visitation

Published online by Cambridge University Press:  31 May 2011

Hamleth Valois-Cuesta*
Affiliation:
Programa de Biología con Énfasis en Recursos Naturales, Facultad de Ciencias Básicas, Universidad Tecnológica del Chocó, A.A. 292 Quibdó, Chocó, Colombia Postgrado en Ecología Tropical, Instituto de Ciencias Ambientales y Ecológicas, Facultad de Ciencias, Universidad de Los Andes, Mérida (5101), Venezuela
Pascual J. Soriano
Affiliation:
Postgrado en Ecología Tropical, Instituto de Ciencias Ambientales y Ecológicas, Facultad de Ciencias, Universidad de Los Andes, Mérida (5101), Venezuela
Juan Francisco Ornelas
Affiliation:
Departamento de Biología Evolutiva, Instituto de Ecología A.C., Carretera antigua a Coatepec No. 351, El Haya, Xalapa, Veracruz 91070, México
*
1Corresponding author. Email: havalois@yahoo.com

Abstract:

We investigated morph differences in attributes that contribute to rewarding floral visitors of the distylous shrub Palicourea demissa at La Mucuy cloud forest in Venezuela. In both morphs, we measured nectar production from flowers subjected to repeated removals at 2-h intervals (10 plants per morph) and flowers that accumulated nectar for 24 h (10 plants per morph). In both cases, floral visitors were excluded. In addition, we quantified nectar availability (30 plants per morph), floral visitation (10–12 plants per morph) and legitimate pollination (30 plants per morph) throughout the day. We explored morph differences in the variables mentioned above using analyses of variance, and the effects of nectar variation on floral visitation and legitimate pollination using regression models. We observed 1205 floral visits, grouped into six hummingbird (94.7%) and three insect species (5.3%), across observations (264 h). Coeligena torquata was the most frequent floral visitor (34%) in both morphs (1.4–1.7 visits per plant h−1). Nectar production and availability, and visitation rate were similar between morphs. Visitation rate and legitimate pollen deposition increased with the nectar production in both morphs, but levels of legitimate pollination were higher on short-styled flowers than long-styled flowers. These results show that short-styled and long-styled flowers reward floral visitors equally, but frequency and foraging behaviour of long-billed pollinators can promote asymmetrical legitimate pollination.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ATAROFF, M. & RADA, F. 2000. Deforestation impact on water dynamic in a Venezuelan Andean cloud forest. Ambio 29:440444.CrossRefGoogle Scholar
ATAROFF, M. & SARMIENTO, L. 2004. Las unidades ecológicas de los Andes de Venezuela. Pp. 1026 in La Marca, E. & Soriano, P. J. (eds.). Reptiles de los Andes de Venezuela. Fundación Polar, Conservación Internacional, CODEPRE-ULA, Fundación Mérida, BIOGEOS, Mérida, Venezuela.Google Scholar
BARRETT, S. C. H. 1992. Heterostylous genetic polymorphisms: model systems for evolutionary analysis. Pp. 129 in Barrett, S. C. H. (ed.). Evolution and function of heterostyly. Springer-Verlag, New York.Google Scholar
BARRETT, S. C. H. 2002. The evolution of plants' sexual diversity. Nature Genetics 3:274284.CrossRefGoogle ScholarPubMed
BARRETT, S. C. H. & SHORE, J. S. 2008. New insights on heterostyly: comparative biology, ecology, and genetics. Pp. 332 in Franklin-Tong, V. E. (ed.). Self-incompatibility in flowering plants. Springer-Verlag, Berlin.CrossRefGoogle Scholar
BOLTEN, A. B., FEINSINGER, P., BAKER, H. G. & BAKER, I. 1979. On the calculation of sugar concentration in flower nectar. Oecologia 41:301304.CrossRefGoogle ScholarPubMed
CARLSON, J. E. & HARMS, K. E. 2006. The evolution of gender-biased nectar production in hermaphroditic plants. The Botanical Review 72:179205.CrossRefGoogle Scholar
CASTELLANOS, M. C., WILSON, P. & THOMSON, J. D. 2002. Dynamic nectar replenishment in flowers of Penstemon (Scrophulariaceae). American Journal of Botany 89:111118.Google Scholar
CASTRO, C. C. & OLIVEIRA, P. E. A. 2001. Reproductive biology of the protandrous Ferdinandusa speciosa Pohl (Rubiaceae) in southeastern Brazil. Revista Brasileira de Botânica 24:167172.Google Scholar
CAWOY, V., KINET, J. M. & JACQUEMART, A. L. 2008. Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Annals of Botany 102:675684.CrossRefGoogle ScholarPubMed
COELHO, C. P. & BARBOSA, A. A. 2004. Biología reproductiva de Psychotria poeppigiana (Mull) Arg. (Rubiaceae) em mata de galeria. Acta Botanica Brasilica 18:481489.CrossRefGoogle Scholar
CONTRERAS, P. S. & ORNELAS, J. F. 1999. Reproductive conflicts of Palicourea padifolia (Rubiaceae), a distylous shrub of a tropical cloud forest in Mexico. Plant Systematics and Evolution 219:225241.Google Scholar
CRESSWELL, J. E. 1999. The influence of nectar and pollen availability on pollen transfer by individual flowers of oil-seed rape (Brassica napus) when pollinated by bumblebees (Bombus lapidarius). Journal of Ecology 87:670677.Google Scholar
DARWIN, C. 1877. The different forms of flowers on plants of the same species. John Murray, London. 352 pp.CrossRefGoogle Scholar
DE JONG, T. J. & KLINKHAMER, P. 2005. Evolutionary ecology of plant reproductive strategies. Cambridge University Press, New York. 340 pp.Google Scholar
DULBERGER, R. 1992. Floral polymorphisms and their functional significance in the heterostylous syndrome. Pp. 4184 in Barrett, S. C. H. (ed.). Evolution and function of heterostyly. Springer-Verlag, New York.CrossRefGoogle Scholar
ENGEL, E. C. & IRWIN, R. E. 2003. Linking pollinator visitation rate and pollen receipt. American Journal of Botany 90:16121618.Google Scholar
FEINSINGER, P. & BUSBY, W. H. 1987. Pollen carryover: experimental comparisons between morphs of Palicourea lasiorrachis (Rubiaceae), a distylous, bird-pollinated, tropical treelet. Oecologia 73:231235.CrossRefGoogle ScholarPubMed
GANDERS, F. R. 1979. The biology of heterostyly. New Zealand Journal of Botany 17:607635.Google Scholar
GARCÍA-ROBLEDO, C. 2008. Asymmetry in pollen flow promotes gender specialization in morphs of the neotropical herb Acrytophyllum lavarum (Rubiaceae). Evolutionary Ecology 22:743755.CrossRefGoogle Scholar
HERNÁNDEZ, A. & ORNELAS, J. F. 2007. Disassortative pollen transfer in distylous Palicourea padifolia (Rubiaceae), a hummingbird-pollinated shrub. Ecoscience 14:816.CrossRefGoogle Scholar
HILTY, S. L. 2003. Birds of Venezuela. Princeton University Press, Princeton. 928 pp.Google Scholar
KEARNS, C. A. & INOUYE, D. W. 1993. Techniques for pollination biologists. University Press of Colorado, Niwot. 583 pp.Google Scholar
KLINKHAMER, P., DE JONG, T. J. & LINNEBANK, L. A. 2001. Small-scale spatial patterns determine ecological relationships: an experimental example using nectar production rates. Ecology Letters 4:559567.CrossRefGoogle Scholar
LASSO, E. & NARANJO, M. E. 2003. Effect of pollinators and nectar robbers on nectar production and pollen deposition in Hamelia patens (Rubiaceae). Biotropica 35:5766.Google Scholar
LAU, P. & BOSQUE, C. 2003. Pollen flow in the distylous Palicourea fendleri (Rubiaceae): an experimental test of the disassortative pollen flow hypothesis. Oecologia 135:593600.Google Scholar
LEEGE, L. M. & WOLFE, L. M. 2002. Do floral herbivores respond to variation in flower characteristics in Gelsemium sempervirens (Loganiaceae), a distylous vine? American Journal of Botany 89:12701274.CrossRefGoogle ScholarPubMed
LLOYD, D. G. & WEBB, C. J. 1992. The selection of heterostyly. Pp. 179207 in Barrett, S. C. H. (eds.). Evolution and function of heterostyly. Springer-Verlag, New York.CrossRefGoogle Scholar
MANETAS, Y. & PETROPOULOU, Y. 2002. Nectar amount, pollinator visit duration and pollination success in the Mediterranean shrub Cistus creticus. Annals of Botany 86:815820.Google Scholar
MUSICANTE, M. L. & GALETTO, L. 2008. Características del néctar de Cologania broussonetii (Balb.) DC. (Fabaceae) y su relación con los visitantes florales. Ecología Austral 18:195204.Google Scholar
ORDANO, M. & ORNELAS, J. F. 2004. Generous-like flowers: nectar production in two epiphytic bromeliads and a meta-analysis of removal effects. Oecologia 140:495505.CrossRefGoogle Scholar
ORNELAS, J. F., JIMÉNEZ, L., GONZÁLEZ, C. & HERNÁNDEZ, A. 2004a. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. I. Hummingbirds' effectiveness as pollen vectors. American Journal of Botany 91:10521060.CrossRefGoogle Scholar
ORNELAS, J. F., GONZÁLEZ, C., JIMÉNEZ, L., LARA, C. & MARTÍNEZ, A. J. 2004b. Reproductive ecology of distylous Palicourea padifolia (Rubiaceae) in a tropical montane cloud forest. II. Attracting and rewarding mutualistic and antagonistic visitors. American Journal of Botany 91:10611069.Google Scholar
PLEASANTS, J. M. 1983. Nectar production patterns in Ipomopsis aggregata (Polemoniaceae). American Journal of Botany 70:14681475.CrossRefGoogle Scholar
RENGIFO, C., NAVA, A. & ZAMBRANO, M. 2005. Lista de aves de La Mucuy y Mucubaji, Parque Nacional Sierra Nevada, Mérida-Venezuela. Serie Aves de Mérida, Mérida, Venezuela. 79 pp.Google Scholar
SOBREVILA, C., RAMIREZ, N. & DE ENRECH, N. X. 1983. Reproductive biology of Palicourea fendleri and P. petiolaris (Rubiaceae), heterostylous shrubs of a tropical cloud forest in Venezuela. Biotropica 15:161169.CrossRefGoogle Scholar
STONE, J. L. 1995. Pollen donation patterns in a tropical distylous shrub (Psychotria suerrensis, Rubiaceae). American Journal of Botany 82:13901398.Google Scholar
STONE, J. L. & THOMSON, J. D. 1994. The evolution of distyly: pollen transfer in artificial flowers. Evolution 48:15951606.CrossRefGoogle ScholarPubMed
TEIXEIRA, L. A. & MACHADO, I. C. 2004a. Biologia da polinização e sistema reproductivo de Psychotria barbiflora DC. (Rubiaceae). Acta Botanica Brasilica 18:853862.CrossRefGoogle Scholar
TEIXEIRA, L. A. & MACHADO, I. C. 2004b. Sabicea cinerea Aubl. (Rubiaceae): diestilia e polinização em um fragmento de floresta Atlântica em Pernambuco, Nordeste do Brasil. Revista Brasileira de Botânica 27:193204.Google Scholar
VALOIS-CUESTA, H. & NOVOA-SHEPPARD, S. 2006. Ecología reproductiva de Palicourea demissa (Rubiaceae): néctar y colibríes en una selva nublada de Los Andes venezolanos. Revista Institucional de la Universidad Tecnológica del Chocó 25:4046.Google Scholar
VALOIS-CUESTA, H., LÓLEZ-PEREA, D. & QUINTO-VALOYES, Z. 2009. Reproductive ecology of Psychotria poeppigiana (Rubiaceae): a comparative analysis between long-styled and short-styled plants. Ecotropicos 22:112.Google Scholar
VALOIS-CUESTA, H., SORIANO, P. J. & ORNELAS, J. F. 2011. Dimorphisms and self-incompatibility in the distylous species Palicourea demissa (Rubiaceae): possible implications for its reproductive output. Journal of Plant Research 124:137146.CrossRefGoogle ScholarPubMed
WOLF, L. L. & HAINSWORTH, F. R. 1990. Non-random foraging by hummingbirds: patterns of movement between Ipomopsis aggregata (Pursch) V. Grant inflorescences. Functional Ecology 4:149157.CrossRefGoogle Scholar