Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:06:35.214Z Has data issue: false hasContentIssue false

Bufadienolide and alkaloid-based chemical defences in two different species of neotropical anurans are equally effective against the same arthropod predators

Published online by Cambridge University Press:  15 March 2016

Maggie M. Hantak
Affiliation:
Department of Biology, John Carroll University, University Heights, OH 44118, USA
Daniel J. Paluh
Affiliation:
Department of Biology, John Carroll University, University Heights, OH 44118, USA
Ralph A. Saporito*
Affiliation:
Department of Biology, John Carroll University, University Heights, OH 44118, USA
*
1Corresponding author. Email: rsaporito@jcu.edu

Abstract:

Defensive chemicals in anuran skin secretions function in protection against potential predators. Although studies have demonstrated that particular chemicals are effective against certain predators, very little is known about how different chemicals from different species function against the same predators. Understanding how different chemicals function as a defence against similar predators is fundamental to the ecology and evolution of chemical defences in frogs. In the present study, the defensive function of bufadienolide-based defences in adult Rhaebo haematiticus (Bufonidae) were compared with alkaloid-based defences in adult and juvenile Dendrobates auratus (Dendrobatidae) against the same predators. Most bufonids contain synthesized bufadienolides, whereas dendrobatids contain dietary-derived alkaloids. Predation trials were performed with two potential invertebrate predators, Paraponera clavata (bullet ant) and Cupiennius coccineus (ctenid spider), to determine how these predators respond to two different types of frog chemical defence. The non-chemically defended frog Craugastor fitzingeri served as a control in all predation trials. Our results suggest that bufadienolide defences of R. haematiticus and alkaloid defences of D. auratus are equally effective towards bullet ant and ctenid spider predators. The similar avoidance and cleaning behaviours exhibited by these ants and spiders after contact with bufadienolides and alkaloids suggest that both types of defence are unpalatable to these arthropod predators.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVARADO, J. B., ALVAREZ, A. & SAPORITO, R. A. 2013. Oophaga pumilio (strawberry poison frog). Predation. Herpetological Review 44:298.Google Scholar
BARTH, F. G., SEYFARTH, E. A., BLECKMANN, H. & SCHÜCH, W. 1988. Spiders of the Genus Cupiennius Simon 1891 (Araneae, Ctenidae). I. Range distributions, dwelling plants, and climate characteristics of the habitats. Oecologia 7:187193.CrossRefGoogle Scholar
BRODIE, E. D. & TUMBARELLO, M. S. 1978. The antipredator functions of Dendrobates auratus (Amphibia, Anura, Dendrobatidae) skin secretion in regard to a snake predator (Thamnophis). Journal of Herpetology 12:264265.Google Scholar
BRODIE, E. D., FORMANOWICZ, D. R. & BRODIE, E. D. 1978. The development of noxiousness of Bufo americanus tadpoles to aquatic insect predators. Herpetologica 34:302306.Google Scholar
CONLON, J. M. 2011. The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell and Tissue Research 343:201212.Google Scholar
ERSPAMER, V. 1994. Bioactive secretions of the amphibian integument. Pp. 178350 in Heatwole, H. & Barthalmus, G. T. (eds.). Amphibian biology. The integument. Surrey Beatty, Chipping Norton.Google Scholar
FERREIRA, P. M. P., LIMA, D. J. B., DEBIASI, B. W., SOARES, B. M., MACHADO, K. C., NORONHA, J. C., RODRIGUES, D. J., SINHORIN, A. P., PESSOA, C. & JÚNIOR, G. M. V. 2013. Antiproliferative activity of Rhinella marina and Rhaebo guttatus venom extracts from southern Amazon. Toxicon 72:4351.CrossRefGoogle ScholarPubMed
FORMANOWICZ, D. R. & BRODIE, E. D. 1982. Relative palatabilities of members of a larval amphibian community. Copeia 1982:9197.CrossRefGoogle Scholar
FRITZ, G. N., STANLEY, A. & DEPAMPHILIS, C. W. 1981. The aposematically colored frog, Dendrobates pumilio, is distasteful to the large, predatory ant, Paraponera clavata. Biotropica 13:158159.Google Scholar
GRAY, H. M., KAISER, H. & GREEN, D. M. 2010. Does alkaloid sequestration protect the green poison frog, Dendrobates auratus, from predator attacks? Salamandra 46:235238.Google Scholar
GUYER, C. & DONNELLY, M. A. 2005. Amphibians and Reptiles of La Selva, Costa Rica, and the Caribbean Slope. University of California Press, Oakland. 367 pp.Google Scholar
HEINEN, J. T. 1985. Cryptic behaviour in juvenile toads. Journal of Herpetology 19:524527.Google Scholar
HOSTETLER, J. R. & CANNON, M. S. 1974. The anatomy of the parotoid gland in Bufonidae with some histological findings. I. Bufo marinus. Journal of Morphology 142:225239.Google Scholar
MAAN, M. E. & CUMMINGS, M. E. 2012. Poison frog colors are honest signals of toxicity, particularly for bird predators. American Naturalist 179:E1–E14.Google Scholar
MINA, A. E., PONTI, A. K., WOODCRAFT, N. L., JOHNSON, E. E. & SAPORITO, R. A. 2015. Variation in alkaloid-based microbial defenses of the dendrobatid poison from Oophaga pumilio. Chemoecology 25:169178.Google Scholar
MURRAY, E. M., BOLTON, S. K., BERG, T. & SAPORITO, R. A. 2016. Arthropod predation in a dendrobatid poison frog: does life stage matter? Zoology, http://dx.doi.org/10.1016/j.zool.2016.01.002.Google Scholar
PALUH, D. P., HANTAK, M. M. & SAPORITO, R. A. 2014. A test of aposematism in the dendrobatid poison frog Oophaga pumilio: the importance of movement in clay model experiments. Journal of Herpetology 48:249254.Google Scholar
SAPORITO, R. A., SPANDE, T. F., GARRAFFO, H. M. & DONNELLY, M. A. 2009. Arthropod alkaloids in poison frogs: a review of the dietary hypothesis. Heterocycles 79:277297.CrossRefGoogle Scholar
SAPORITO, R. A., ISOLA, M., MACCACHERO, V. C., CONDON, K. & DONNELLY, M. A. 2010. Ontogenetic scaling of poison glands in a dendrobatid poison frog. Journal of Zoology 282:238245.Google Scholar
SAPORITO, R. A., DONNELLY, M. A., SPANDE, T. F. & GARRAFFO, H. M. 2012. A review of chemical ecology in poison frogs. Chemoecology 22:159168.Google Scholar
SHINE, R. 2010. The ecological impact of invasive cane toads (Bufo marinus) in Australia. Quarterly Review of Biology 85:253291.CrossRefGoogle ScholarPubMed
STYNOSKI, J. L., TORRES-MENDOZA, Y., SASA-MARIN, M. & SAPORITO, R. A. 2014. Evidence of maternal provisioning of alkaloid-based chemical defenses in the strawberry poison frog Oophaga pumilio. Ecology 95:587593.CrossRefGoogle ScholarPubMed
SUMMERS, K. & CLOUGH, M. E. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences USA 98:62276232.Google Scholar
SZELISTOWSKI, W. A. 1985. Unpalatability of the poison arrow frog Dendrobates pumilio to the ctenid spider Cupiennius coccineus. Biotropica 17:345346.Google Scholar
TOLEDO, L. F., RIBEIRO, R. S. & HADDAD, C. F. B. 2007. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. Journal of Zoology 271:170177.Google Scholar
WELDON, P. J., KRAMER, M., GORDON, S., SPANDE, T. F. & DALY, J. W. 2006. A common pumiliotoxin from poison frogs exhibits enantioselective toxicity against mosquitoes. Proceedings of the National Academy of Sciences USA 103:1781817821.Google Scholar
YOUNG, A. M. & HERMANN, H. R. 1980. Notes on foraging of the giant tropical ant Paraponera clavata (Hymenoptera: Formicidae: Ponerinae). Journal of the Kansas Entomological Society 53:3555.Google Scholar