Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-10T19:34:08.022Z Has data issue: false hasContentIssue false

Co-occurrence of small mammals in a tropical dry deciduous forest: comparisons of communities and individual species in Colima, Mexico

Published online by Cambridge University Press:  08 December 2011

Cassie J. Poindexter
Affiliation:
Sam Noble Oklahoma Museum of Natural History and Department of Zoology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA
Gary D. Schnell*
Affiliation:
Sam Noble Oklahoma Museum of Natural History and Department of Zoology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, USA
Cornelio Sánchez-Hernández
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, A.P. 70–153, Coyoacán, México, D.F. 04510, México
María de Lourdes Romero-Almaraz
Affiliation:
Escuinapa No.92 bis. Col. Pedregal de Santo Domingo, C.P. 04360, México, D.F., México
Michael L. Kennedy
Affiliation:
Ecological Research Center, Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA
Troy L. Best
Affiliation:
Department of Biological Sciences, 331 Funchess Hall, Auburn University, AL 36849, USA
Michael C. Wooten
Affiliation:
Department of Biological Sciences, 331 Funchess Hall, Auburn University, AL 36849, USA
Robert D. Owen
Affiliation:
Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA, and Martín Barrios 2230 c/ Pizarro, Barrio Republicano, Asunción, Paraguay
*
1Corresponding author. Email: gschnell@ou.edu

Abstract:

Species co-occurrence is an important ecological research area. Mark-and-recapture studies of mammals allow identification of coexisting species, a necessary step in determining mechanisms enabling habitat sharing. Using data from five 1-ha grids in January 2004 in tropical dry deciduous forest of coastal Colima, Mexico, we detected significantly more interspecific overlap than expected between seven species pairs. Oryzomys couesi shared more stations than expected with Sigmodon mascotensis, Baiomys musculus and Peromyscus perfulvus. Baiomys musculus was associated positively with S. mascotensis and Reithrodontomys fulvescens. Heteromys pictus shared fewer stations than expected with O. couesi and S. mascotensis. For species collectively, there was non-random community structuring, with two grids displaying more species aggregation than expected. While two grids had non-random co-occurrence patterns, three grids did not differ from random, which differs from that reported for mammalian taxa on average. Other small-mammal studies have documented species segregation, while this study detected more positive than negative associations. Similarities in preference and habitat use (or diet) are likely explanations for interspecific overlap patterns at stations and co-occurrence patterns among grids. Simultaneously evaluating associations of species pairs and all species on a grid collectively is novel methodology as applied to mammals, adding to understanding of species co-occurrence.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BOWERS, M. A. & BROWN, J. H. 1982. Body size and coexistence in desert rodents: chance or community structure? Ecology 63:391400.CrossRefGoogle Scholar
BRIONES, M. & SÁNCHEZ-CORDERO, V. 1999. Dietary value of fruits and seeds to spiny pocket mice (Liomys pictus) in a tropical deciduous forest in Mexico. Studies on Neotropical Fauna and Environment 34:6571.CrossRefGoogle Scholar
BROWN, J. H., FOX, B. J. & KELT, D. A. 2000. Assembly rules: desert rodent communities are structured at scales from local to continental. American Naturalist 156:314321.CrossRefGoogle ScholarPubMed
BROWN, J. H., KELT, D. A & FOX, B. J. 2002. Assembly rules and competition in desert rodents. American Naturalist 160:815818.CrossRefGoogle ScholarPubMed
CARDILLO, M. & MEIJAARD, E. 2010. Phylogeny and co-occurrence of mammal species on Southeast Asian islands. Global Ecology and Biogeography 19:465474.CrossRefGoogle Scholar
CASTRO-ARELLANO, I. 2005. Ecological patterns of the small mammal communities at El Cielo Biosphere Reserve, Tamaulipas, Mexico. Ph.D. dissertation, Texas A&M University, College Station.Google Scholar
CASTRO-ARELLANO, I. & LACHER, T. E. 2009. Temporal niche segregation in two rodent assemblages of subtropical Mexico. Journal of Tropical Ecology 25:593603.CrossRefGoogle Scholar
CAVENDER-BARES, J., KOZAK, K. H., FINE, P. V. A. & KEMBEL, S. W. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693715.CrossRefGoogle ScholarPubMed
CEBALLOS, G. & MIRANDA, A. 2000. Guía de campo de los mamíferos de la Costa de Jalisco, México. A field guide to the mammals of the Jalisco coast, Mexico. Fundación Ecológica de Cuixmala, A.C., La Huerta. 502 pp.Google Scholar
CEBALLOS GONZALEZ, G. J. 1989. Population and community ecology of small mammals from tropical deciduous and arroyo forests in western Mexico. Ph.D. dissertation, University of Arizona, Tucson.Google Scholar
COLE, L. C. 1949. The measurement of interspecific association. Ecology 30:411424.CrossRefGoogle Scholar
DIAMOND, J. M. 1975. Assembly of species communities. Pp. 342444 in Cody, M. L. & Diamond, J. M. (eds.). Ecology and evolution of communities. Harvard University Press, Cambridge.Google Scholar
FOX, B. J. & BROWN, J. H. 1993. Assembly rules for functional groups in North American desert rodent communities. Oikos 67:358370.CrossRefGoogle Scholar
FOX, B. J. & BROWN, J. H. 1995. Reaffirming the validity of the assembly rule for functional groups or guilds: a reply to Wilson. Oikos 73:125132.CrossRefGoogle Scholar
GEIER, A. R. & BEST, L. B. 1980. Habitat selection by small mammals of riparian communities: evaluating effects of habitat alterations. Journal of Wildlife Management 44:1624.CrossRefGoogle Scholar
GOTELLI, N. J. 2000. Null model analysis of species co-occurrence patterns. Ecology 81:26062621.CrossRefGoogle Scholar
GOTELLI, N. J. & GRAVES, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, DC. 368 pp.Google Scholar
GOTELLI, N. J. & MCCABE, D. J. 2002. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83:20912096.CrossRefGoogle Scholar
GOTELLI, N. J. & ROHDE, K. 2002. Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5:8694.CrossRefGoogle Scholar
HAFNER, J. C., LIGHT, J. E., HAFNER, D. J., HAFNER, M. S., REDDINGTON, E., ROGERS, D. S. & RIDDLE, B. R. 2007. Basal clades and molecular systematics of heteromyid rodents. Journal of Mammalogy 88:11291145.CrossRefGoogle Scholar
HUTCHINSON, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145159.CrossRefGoogle Scholar
INSTITUTO NACIONAL DE ESTADÍSTICA, GEOGRAFÍA E INFORMÁTICA. 2005. Anuario estadístico del Estado de Colima. Instituto Nacional de Estadística, Geografía e Informática, Aguascalientes, Aguascalientes, Mexico. 521 pp.Google Scholar
KISSELL, R. E. & KENNEDY, M. L. 1992. Ecologic relationships of co-occurring populations of opossums (Didelphis virginiana) and raccoons (Procyon lotor) in Tennessee. Journal of Mammalogy 73:808813.CrossRefGoogle Scholar
KRASNOV, B. R., STANKO, M. & MORAND, S. 2006. Are ectoparasite communities structured? Species co-occurrence, temporal variation and null models. Journal of Animal Ecology 75:13301339.CrossRefGoogle ScholarPubMed
KRASNOV, B. R., MATTHEE, S., LARESCHI, M., KORALLO-VINARSKAYA, N. P. & VINARSKI, M. V. 2010. Co-occurrence of ectoparasites on rodent hosts: null model analyses of data from three continents. Oikos 119:120128.CrossRefGoogle Scholar
MACARTHUR, R. & LEVINS, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. American Naturalist 101:377385.CrossRefGoogle Scholar
MCPEEK, M. A. & BROWN, J. M. 2000. Building a regional species pool: diversification of the Enallagma damselflies in eastern North America. Ecology 81:904920.CrossRefGoogle Scholar
MEDELLÍN, X. L. & MEDELLÍN, R. A. 2005. Oryzomys couesi (Alston, 1877). Pp. 709710 in Ceballos, G. & Oliva, G. (eds.). Los mamíferos silvestres de México. Fondo de Cultura Económica and Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, D.F.Google Scholar
MICHAEL, E. L. 1920. Marine ecology and the coefficient of association: a plea in behalf of quantitative biology. Journal of Ecology 8:5459.CrossRefGoogle Scholar
MUSSER, G. G. & CARLETON, M. D. 2005. Superfamily Muroidea. Pp. 8941531 in Wilson, D. E. & Reeder, D. M. (eds.). Mammal species of the world. A taxonomic and geographic reference. (Third edition). Johns Hopkins University Press, Baltimore.Google Scholar
ROHDE, K. 2005. Nonequilibrium ecology. Cambridge University Press, New York. 236 pp.Google Scholar
SÁNCHEZ-CORDERO, V. 2001. Elevation gradients of diversity for rodents and bats in Oaxaca, Mexico. Global Ecology and Biogeography 10:6376.CrossRefGoogle Scholar
SANCHEZ-CORDERO, V. & FLEMING, T. H. 1993. Ecology of tropical heteromyids. Pp. 596617 in Genoways, H. H. & Brown, J. H. (eds.). Biology of the Heteromyidae. Special Publication No. 10, American Society of Mammalogists.Google Scholar
SARÀ, M., BELLIA, E. & MILAZZO, A. 2006. Fire disturbance disrupts co-occurrence patterns of terrestrial vertebrates in Mediterranean woodlands. Journal of Biogeography 33:843852.CrossRefGoogle Scholar
SCHNELL, G. D., POINDEXTER, C. J., SÁNCHEZ-HERNÁNDEZ, C., ROMERO-ALMARAZ, M. L., KENNEDY, M. L., BEST, T. L., WOOTEN, M. C. & JIMÉNEZ, A. P. 2008. Demographic features and habitat preferences of southern pygmy mice (Baiomys musculus) in Colima, Mexico. Canadian Journal of Zoology 86:507524.CrossRefGoogle Scholar
SCHNELL, G. D., ROMERO-ALMARAZ, M. L., MARTÍNEZ-CHAPITAL, S. T., SÁNCHEZ-HERNÁNDEZ, C., KENNEDY, M. L., BEST, T. L., WOOTEN, M. C. & OWEN, R. D. 2010. Habitat use and demographic characteristics of the west Mexican cotton rat (Sigmodon mascotensis). Mammalia 74:379393.CrossRefGoogle Scholar
STONE, L. & ROBERTS, A. 1990. The checkerboard score and species distributions. Oecologia 85:7479.CrossRefGoogle ScholarPubMed
VÁZQUEZ, L. B., CAMERON, G. N. & MEDELLÍN, R. A. 2004. Characteristics of diet of Peromyscus aztecus and Reithrodontomys fulvescens in montane western Mexico. Journal of Mammalogy 85:196205.CrossRefGoogle Scholar
WIENS, J. A. 1989. The ecology of bird communities. Volume 2. Processes and variations. Cambridge University Press, New York.CrossRefGoogle Scholar
WITTMAN, S. E., SANDERS, N. J., ELLISON, A. M., JULES, E. S., RATCHFORD, J. S. & GOTELLI, N. J. 2010. Species interactions and thermal constraints on ant community structure. Oikos 119:551559.CrossRefGoogle Scholar