Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T06:55:33.027Z Has data issue: false hasContentIssue false

Co-variation in biomass and environment at the scale of a forest concession in central Africa

Published online by Cambridge University Press:  13 July 2017

Géraud Sidoine Mankou
Affiliation:
Université Marien Ngouabi, Faculté des Sciences et Techniques, Laboratoire de Botanique et Écologie, BP 69, Brazzaville, Congo
Nicolas Picard*
Affiliation:
CIRAD, UPR Bsef, BP 2572 Yaounde, Cameroon
Alfred Ngomanda
Affiliation:
IRET, BP 13354, Libreville, Gabon
Jean Joël Loumeto
Affiliation:
Université Marien Ngouabi, Faculté des Sciences et Techniques, Laboratoire de Botanique et Écologie, BP 69, Brazzaville, Congo
*
*Corresponding author. Email: nicolas.picard@fao.org

Abstract:

Drivers of forest structure in central African rain forests are largely unknown. Using forest inventory data (3024 0.4-ha plots) in a forest concession of 154 456 ha in north-eastern Gabon covering an altitudinal gradient (from 485 to 1009 m asl), relationships between above-ground plot biomass and environmental variables (soil type, altitude, slope, aspect) and floristic composition (score given by an ordination method) were tested. After controlling for confounding variables, biomass was significantly related to altitude (with a modal response peaking at 346 Mg ha–1 on western slopes at an altitude of 707 m asl) and to aspect (additional 18.3 Mg ha–1 on eastern slopes) but not to floristic composition. Biomass and basal area responded differentially to the environment. Mean wood density was significantly related to soil, altitude and floristic composition, with a predicted minimum of 0.60 g cm–3 at an altitude of 1009 m asl in stands characterized by Scorodophloeus zenkeri and a maximum of 0.69 g cm–3 at an altitude of 458 m asl in monodominant Gilbertiodendron dewevrei stands. Variation in forest structure in the concession was primarily driven by altitude while floristic composition played a role in differentiating the variation in biomass and basal area.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVES, L. F., VIEIRA, S. A., SCARANELLO, M. A., CAMARGO, P. B., SANTOS, F. A. M., JOLY, C. A. & MARTINELLI, L. A. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260:679691.Google Scholar
AVITABILE, V., HEROLD, M., HEUVELINK, G. B. M., LEWIS, S. L., PHILLIPS, O. L., ASNER, G. P., ARMSTON, J., ASTHON, P. S., BANIN, L. F., BAYOL, N., BERRY, N., BOECKX, P., DE JONG, B., DEVRIES, B., GIRARDIN, C., KEARSLEY, E., LINDSELL, J. A., LOPEZ-GONZALEZ, G., LUCAS, R., MALHI, Y., MOREL, A., MITCHARD, E., NAGY, L., QIE, L., QUINONES, M., RYAN, C. M., SLIK, F., SUNDERLAND, T., VAGLIO LAURIN, G., VALENTINI, R., VERBEECK, H., WIJAYA, A. & WILLCOCK, S. 2016. An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology 22:14061420.Google Scholar
BACCINI, A., GOETZ, S. J., WALKER, W. S., LAPORTE, N. T., SUN, M., SULLA-MENASHE, D., HACKLER, J., BECK, P. S. A., DUBAYAH, R., FRIEDL, M. A., SAMANTA, S. & HOUGHTON, R. A. 2012. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change 2:182185.Google Scholar
BANERJEE, S., CARLIN, B. P. & GELFAND, A. E. 2004. Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton. 452 pp.Google Scholar
BARALOTO, C., RABAUD, S., MOLTO, Q., BLANC, L., FORTUNEL, C., HÉRAULT, B., DÁVILA, N., MESONES, I., RIOS, M., VALDERRAMA, E. & FINE, P. V. A. 2011. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Global Change Biology 17:26772688.CrossRefGoogle Scholar
BROWN, S. 1997. Estimating biomass and biomass change of tropical forests: a primer. FAO, Rome. 65 pp.Google Scholar
CABALLÉ, G. 1978. Essai sur la géographie forestière du Gabon. Adansonia 17:425440.Google Scholar
CHAVE, J., RÉJOU-MÉCHAIN, M., BÚRQUEZ, A., CHIDUMAYO, E., COLGAN, M. S., DELITTI, W. B. C., DUQUE, A., EID, T., FEARNSIDE, P. M., GOODMAN, R. C., HENRY, M., MARTÍNEZ-YRÍZAR, A., MUGASHA, W. A., MULLER-LANDAU, H. C., MENCUCCINI, M., NELSON, B. W., NGOMANDA, A., NOGUEIRA, E. M., ORTIZ-MALAVASSI, E., PÉLISSIER, R., PLOTON, P., RYAN, C. M., SALDARRIAGA, J. G. & VIEILLEDENT, G. 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology 20:31773190.Google Scholar
CHEN, Z. S., HSIEH, C. F., JIANG, F. Y., HSIEH, T. H. & SUN, I. F. 1997. Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecology 132:229241.Google Scholar
CLARK, D. B., HURTADO, J. & SAATCHI, S. S. 2015. Tropical rain forest structure, tree growth and dynamics along a 2700-m elevational transect in Costa Rica. PLoS ONE 10:e0122905.Google Scholar
COUTERON, P., PÉLISSIER, R., MAPAGA, D., MOLINO, J. F. & TEILLIER, L. 2003. Drawing ecological insights from a management-oriented forest inventory in French Guiana. Forest Ecology and Management 172:89108.CrossRefGoogle Scholar
CULMSEE, H., LEUSCHNER, C., MOSER, G. & PITOPANG, R. 2010. Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography 37:960974.CrossRefGoogle Scholar
DAY, M., BALDAUF, C., RUTISHAUSER, E. & SUNDERLAND, T. C. H. 2013. Relationships between tree species diversity and above-ground biomass in Central African rainforests: implications for REDD. Environmental Conservation 41:6472.Google Scholar
DE NAMUR, C. 1990. Aperçu sur la végétation de l'Afrique centrale atlantique. Pp. 6067 in Lanfranchi, R. & Schwartz, D. (eds). Paysages quaternaires de l'Afrique centrale atlantique. ORSTOM, Paris.Google Scholar
DJOMO, A. N., KNOHL, A. & GRAVENHORST, G. 2011. Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management 261:14481459.Google Scholar
DOUMENGE, C. 1990. Contribution à l'étude des structures de populations d'arbres des forêts d'Afrique centrale (exemples du Gabon, Cameroun et Congo). Ph.D. thesis. Université Montpellier 2, Montpellier, France.Google Scholar
DOUMENGE, C., GARCIA YUSTE, J. E., GARTLAN, S., LANGRAND, O. & NDINGA, A. 2001. Conservation de la biodiversité forestière en Afrique centrale atlantique: le réseau d'aires protégées est-il adéquat? Bois et Forêts des Tropiques 268:528.Google Scholar
ENSSLIN, A., RUTTEN, G., POMMER, U., ZIMMERMANN, R., HEMP, A. & FISCHER, M. 2015. Effects of elevation and land use on the biomass of trees, shrubs and herbs at Mount Kilimanjaro. Ecosphere 6:art45.Google Scholar
FAO. 2005. Évaluation des ressources forestières nationales du Cameroun 2003–2004. Résumé des résultats de l'inventaire forestier national. Food and Agriculture Organization of the United Nations, Rome. 26 pp.Google Scholar
GONMADJE, C., PICARD, N., GOURLET-FLEURY, S., RÉJOU-MÉCHAIN, M., FREYCON, V., SUNDERLAND, T., MCKEY, D. & DOUMENGE, C. 2017. Altitudinal filtering of large-tree species explains above-ground biomass variation in an Atlantic Central African rain forest. Journal of Tropical Ecology 33:143154.CrossRefGoogle Scholar
GOURLET-FLEURY, S., ROSSI, V., REJOU-MECHAIN, M., FREYCON, V., FAYOLLE, A., SAINT-ANDRÉ, L., CORNU, G., GÉRARD, J., SARRAILH, J. M., FLORES, O., BAYA, F., BILLAND, A., FAUVET, N., GALLY, M., HENRY, M., HUBERT, D., PASQUIER, A. & PICARD, N. 2011. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. Journal of Ecology 99:981990.Google Scholar
KEARSLEY, E., DE HAULLEVILLE, T., HUFKENS, K., KIDIMBU, A., TOIRAMBE, B., BAERT, G., HUYGENS, D., KEBEDE, Y., DEFOURNY, P., BOGAERT, J., BEECKMAN, H., STEPPE, K., BOECKX, P. & VERBEECK, H. 2013. Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the central Congo Basin. Nature Communications 4:2269.CrossRefGoogle ScholarPubMed
KITAYAMA, K. & AIBA, S.-I. 2002. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. Journal of Ecology 90:3751.CrossRefGoogle Scholar
LERIQUE, J. 1983. Climatologie. Pp. 2225 in Barret, J. & Walter, R. (eds). Géographie et cartographie du Gabon – atlas illustré. Edicef, Paris.Google Scholar
LEUSCHNER, C., MOSER, G., BERTSCH, C., RÖDERSTEIN, M. & HERTEL, D. 2007. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic and Applied Ecology 8:219230.Google Scholar
LEWIS, S. L., SONKE, B., SUNDERLAND, T., BEGNE, S. K., LOPEZ-GONZALEZ, G., VAN DER HEIJDEN, G. M. F., PHILLIPS, O. L., AFFUM-BAFFOE, K., BANIN, L., BASTIN, J. F., BEECKMAN, H., BOECKX, P., BOGAERT, J., DECANNIERE, C., CHEZEAU, E., CLARK, C. J., COLLINS, M., DJAGBLETEY, G., DROISSART, V., DOUCET, J. L., FELDPAUSCH, T. R., FOLI, E., GILLET, J. F., HAMILTON, A. C., DE HAULLEVILLE, T., HLADIK, A., HARRIS, D. J., HART, T. B., HUFKENS, K., HUYGENS, D., JEANMART, P., JEFFREY, K., KAMDEM, M. N., KEARSLEY, E., LEAL, M. E., LLLOYD, J., LOVETT, J., MAKANA, J. R., MALHI, Y., MARSHALL, A. R., OJO, L., PEH, K. S. H., PICKAVANCE, G., POULSEN, J., REITSMA, J. M., SHEIL, D., SIMO, M., STEPPE, K., TAEDOUMG, H. E., TALBOT, J., TAPLIN, J., TAYLOR, D., THOMAS, S. C., TOIRAMBE, B., VERBEEC, H., VOTERE, R., WHITE, L. J. T., WILCOCK, S., WOELL, H. & ZEMAGHO, L. 2013. Aboveground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 368:20120295.Google Scholar
MAKANA, J. R., EWANGO, C. N., MCMAHON, S. M., THOMAS, S. C., HART, T. B. & CONDIT, R. 2011. Demography and biomass change in monodominant and mixed old-growth forest of the Congo. Journal of Tropical Ecology 27:447461.Google Scholar
MANIATIS, D., MALHI, Y., SAINT-ANDRÉ, L., MOLLICONE, D., BARBIER, N., SAATCHI, S., HENRY, M., TELLIER, L., SCHWARTZENBERG, M. & WHITE, L. 2011. Evaluating the potential of commercial forest inventory data to report on forest carbon stock and forest carbon stock changes for REDD+ under the UNFCCC. International Journal of Forestry Research 2011:113.CrossRefGoogle Scholar
MARTIN, D., CHATELIN, Y., COLLINET, J., GUICHARD, E. & SALA, G. H. 1981. Les sols du Gabon. Pédogenèse, répartition et aptitudes. Cartes à 1:2.000.000. ORSTOM, Paris. 74 pp.Google Scholar
MITCHARD, E. T. A., FELDPAUSCH, T. R., BRIENEN, R. J. W., LOPEZ-GONZALEZ, G., MONTEAGUDO, A., BAKER, T. R., LEWIS, S. L., LLOYD, J., QUESADA, C. A., GLOOR, M., TER STEEGE, H., MEIR, P., ALVAREZ, E., ARAUJO-MURAKAMI, A., ARAGÃO, L. E. O. C., ARROYO, L., AYMARD, G., BANKI, O., BONAL, D., BROWN, S., BROWN, F. I., CERÓN, C. E., MOSCOSO, V. C., CHAVE, J., COMISKEY, J. A., CORNEJO, F., MEDINA, M. C., DA COSTA, L., COSTA, F. R. C., DI FIORE, A., DOMINGUES, T. F., ERWIN, T. L., FREDERICKSON, T., HIGUCHI, N., CORONADO, E. N. H., KILLEEN, T. J., LAURANCE, W. F., LEVIS, C., MAGNUSSON, W. E., MARIMON, B. S., JUNIOR, B. H. M., POLO, I. M., MISHRA, P., NASCIMENTO, M. T., NEILL, D., NÚÑEZ VARGAS, M. P., PALACIOS, W. A., PARADA, A., PARDO MOLINA, G., PEÑA-CLAROS, M., PITMAN, N., PERES, C. A., POORTER, L., PRIETO, A., RAMIREZ-ANGULO, H., CORREA, Z. R., ROOPSIND, A., ROUCOUX, K. H., RUDAS, A., SALOMÃO, R. P., SCHIETTI, J., SILVEIRA, M., DE SOUZA, P. F., STEININGER, M. K., STROPP, J., TERBORGH, J., THOMAS, R., TOLEDO, M., TORRES-LEZAMA, A., VAN ANDEL, T. R., VAN DER HEIJDEN, G. M. F., VIEIRA, I. C. G., VIEIRA, S., VILANOVA-TORRE, E., VOS, V. A., WANG, O., ZARTMAN, C. E., MALHI, Y. & PHILLIPS, O. L. 2014. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Global Ecology and Biogeography 23:935946.CrossRefGoogle ScholarPubMed
PEH, K. S. H., LEWIS, S. L. & LLOYD, J. 2011 a. Mechanisms of monodominance in diverse tropical tree-dominated systems. Journal of Ecology 99:891898.Google Scholar
PEH, K. S. H., SONKÉ, B., LLOYD, J., QUESADA, C. A. & LEWIS, S. L. 2011 b. Soil does not explain monodominance in a Central African tropical forest. PLoS ONE 6:e16996.Google Scholar
RÉJOU-MÉCHAIN, M., FAYOLLE, A., NASI, R., GOURLET-FLEURY, S., DOUCET, J. L., GALLY, M., HUBERT, D., PASQUIER, A. & BILLAND, A. 2011. Detecting large-scale diversity patterns in tropical trees: can we trust commercial forest inventories? Forest Ecology and Management 261:187194.Google Scholar
RÉJOU-MÉCHAIN, M., MULLER-LANDAU, H. C., DETTO, M., THOMAS, S. C., LE TOAN, T., SAATCHI, S. S., BARRETO-SILVA, J. S., BOURG, N. A., BUNYAVEJCHEWIN, S., BUTT, N., BROCKELMAN, W. Y., CAO, M., CÁRDENAS, D., CHIANG, J. M., CHUYONG, G. B., CLAY, K., CONDIT, R., DATTARAJA, H. S., DAVIES, S. J., DUQUE, A., ESUFALI, S., EWANGO, C., FERNANDO, R. H. S., FLETCHER, C. D., GUNATILLEKE, I. A. U. N., HAO, Z., HARMS, K. E., HART, T. B., HÉRAULT, B., HOWE, R. W., HUBBELL, S. P., JOHNSON, D. J., KENFACK, D., LARSON, A. J., LIN, L., LIN, Y., LUTZ, J. A., MAKANA, J. R., MALHI, Y., MARTHEWS, T. R., MCEWAN, R. W., MCMAHON, S. M., MCSHEA, W. J., MUSCARELLA, R., NATHALANG, A., NOOR, N. S. M., NYTCH, C. J., OLIVEIRA, A. A., PHILLIPS, R. P., PONGPATTANANURAK, N., PUNCHI-MANAGE, R., SALIM, R., SCHURMAN, J., SUKUMAR, R., SURESH, H. S., SUWANVECHO, U., THOMAS, D. W., THOMPSON, J., URÍARTE, M., VALENCIA, R., VICENTINI, A., WOLF, A. T., YAP, S., YUAN, Z., ZARTMAN, C. E., ZIMMERMAN, J. K. & CHAVE, J. 2014. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences Discussions 11:57115742.Google Scholar
SLIK, J. W. F. 2006. Estimating species-specific wood density from the genus average in Indonesian trees. Journal of Tropical Ecology 22:481482.Google Scholar
SLIK, J. W. F., AIBA, S. I., BREARLEY, F. Q., CANNON, C. H., FORSHED, O., KITAYAMA, K., NAGAMASU, H., NILUS, R., PAYNE, J., PAOLI, G., POULSEN, A. D., RAES, N., SHEIL, D., SIDIYASA, K., SUZUKI, E. & VAN VALKENBURG, J. L. C. H. 2010. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and Biogeography 19:5060.Google Scholar
STERNBERG, M. & SHOSHANY, M. 2001. Influence of slope aspect on Mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecological Research 16:335345.CrossRefGoogle Scholar
TAUBERT, F., HARTIG, F., DOBNER, H. J. & HUTH, A. 2013. On the challenge of fitting tree size distributions in ecology. PLoS ONE 8:e58036.Google Scholar
TEREA. 2010. Rapport d'inventaire d'aménagement. Concession de Makokou, tome 1: recensement des ligneux, de la régénération, des PFNL et de la faune. Olam, Libreville.Google Scholar
THOMAS, S. C., MARTIN, A. R. & MYCROFT, E. E. 2015. Tropical trees in a wind-exposed island ecosystem: height-diameter allometry and size at onset of maturity. Journal of Ecology 103: 594605.Google Scholar
TOLEDO, M., POORTER, L., PEÑA-CLAROS, M., ALARCỐN, A., BALCÁZAR, J., LEAÑO, C., LICONA, J. C. & BONGERS, F. 2011. Climate and soil drive forest structure in Bolivian lowland forests. Journal of Tropical Ecology 27:333345.Google Scholar
WHITE, F. 1986. La végétation de l'Afrique. Mémoire accompagnant la carte de végétation de l'Afrique UNESCO/AETFAT/UNSO. ORSTOM/UNESCO, Paris, France. 384 pp.Google Scholar