Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T09:27:46.817Z Has data issue: false hasContentIssue false

Ecological shifts during larval development in two West African savanna frogs

Published online by Cambridge University Press:  03 November 2016

Julian Glos*
Affiliation:
Zoological Institute, Department of Animal Ecology and Conservation, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
Johanna Wolter
Affiliation:
Zoological Institute, Department of Animal Ecology and Conservation, University of Hamburg, Martin-Luther-King Platz 3, 20146 Hamburg, Germany
Ulrich Struck
Affiliation:
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
Mark-Oliver Rödel
Affiliation:
Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
*
*Corresponding author. Email: julian.glos@uni-hamburg.de

Abstract:

During their ontogeny many organisms exhibit size and/or stage-specific variability in a variety of features related to morphology and ecology, leading to a shift in the ecological niche between size- or stage groups. We analysed such ecological shifts between four larval stage groups in each of two syntopic species of frogs (a total of 5870 individuals) in two West African savanna ponds in Côte d'Ivoire. We hypothesized and confirmed differences between stage groups in ecological variables related to microhabitat and feeding niche. Stage groups differed up to 1‰ in δ15N and 1.5‰ in δ13C isotopic signatures, up to 10 cm in selected water depth, up to 6 m in distance to the pond's edge, and in the coverage of submerged vegetation (range = 10–50%). However, the hypothesis that tadpoles with generalized mouthparts (Kassina spp.) exhibit more pronounced ontogenetic shifts in food-web position than a specialized filter-feeding species (Phrynomantis microps), and that differences between larval stages are more pronounced in a heterogeneous habitat (offering more choices of habitat and food niches) than in a homogeneous habitat (offering less choices) was only partly confirmed. This study underlines that potential niche shift during different ontogenetic stages is an important factor to be considered in ecological studies.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALFORD, R. A. & CRUMP, M. L. 1982. Habitat partitioning among size classes of larval southern leopard frogs, Rana utricularia . Copeia 1982:367373.Google Scholar
ALTIG, R. & JOHNSTON, G. J. 1989. Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetological Monographs 3:81109.Google Scholar
ALTIG, R., WHILES, M. R. & TAYLOR, C. L. 2007. What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshwater Biology 52:386395.Google Scholar
ANDRES, M., GISBERT, E., DIAZ, M., MOYANO, F. J., ESTEVEZ, A. & ROTLLANT, G. 2010. Ontogenetic changes in digestive enzymatic capacities of the spider crab, Maja brachydactyla (Decapoda: Majidae). Journal of Experimental Marine Biology and Ecology 389:7584.Google Scholar
BARRIGA, J. P. & BATTINI, M. A. 2009. Ecological significances of ontogenetic shifts in the stream-dwelling catfish, Hatcheria macraei (Siluriformes, Trichomycteridae), in a Patagonian river. Ecology of Freshwater Fish 18:395405.CrossRefGoogle Scholar
BASAGUREN, A., RIANO, P. & POZO, J. 2002. Life history patterns and dietary changes of several caddisfly (Trichoptera) species in a northern Spain stream. Archiv für Hydrobiologie 155:2341.Google Scholar
BERVEN, K. A. 1988. Factors affecting variation in reproductive traits within a population of wood frogs (Rana sylvatica). Copeia 1988:605615.CrossRefGoogle Scholar
BERVEN, K. A. 1990. Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:15991608.CrossRefGoogle Scholar
BERVEN, K. A. & GILL, D. E. 1983. Interpreting geographic variation in life-history traits. American Zoologist 23:8597.Google Scholar
CANDIOTI, M. F. V. 2007. Anatomy of anuran tadpoles from lentic water bodies: systematic relevance and correlation with feeding habits. Zootaxa 1600:1175.Google Scholar
CAUT, S., ANGULO, E., DÍAZ-PANIAGUA, C. & GOMEZ-MESTRE, I. 2013. Plastic changes in tadpole trophic ecology revealed by stable isotope analyses. Oecologia 173:95105.Google Scholar
CHANNING, A., RÖDEL, M.-O. & CHANNING, J. 2012. Tadpoles of Africa. Edition Chimaira, Frankfurt. 402 pp.Google Scholar
DENIRO, M. J. & EPSTEIN, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45:341351.Google Scholar
DIAZ, A. C., GIMENEZ, A. V. F., VELURTAS, S. M. & FENUCCI, J. L. 2008. Ontogenetic changes in the digestive system of Pleoticus muelleri (Decapoda, Penaeoidea). Invertebrate Reproduction and Development 52:112.Google Scholar
EDWARDS, D. C. 1969. Zonation by size as an adaptation for intertidal life in Olivella biplicata . American Zoologist 9:399417.Google Scholar
FLECKER, A. S., FEIFAREK, B. P. & TAYLOR, B. W. 1999. Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth rates. Copeia 1999:495500.CrossRefGoogle Scholar
GOSNER, K. L. 1960. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183190.Google Scholar
HENNENBERG, K. J., ORTHMANN, B., STEINKE, I. & POREMBSKI, S. 2007. Core area analysis at semi-deciduous forest islands in the Comoé National Park, NE Ivory Coast. Biodiversity and Conservation 17:27872797.CrossRefGoogle Scholar
HEYER, W. R., DONNELLY, M. A., MCDIARMID, R. W., HAYEK, L.-A. C. & FOSTER, M. S. (eds.) 1994. Measuring and monitoring biological diversity: standard methods for amphibians. Smithonian Institution Press, Washington. 384 pp.Google Scholar
HIRSCHFELD, M. & RÖDEL, M.-O. 2011. Variable reproductive strategies of an African savanna frog, Phrynomantis microps (Amphibia, Anura, Microhylidae). Journal of Tropical Ecology 27:601609.Google Scholar
KAWAKAMI, T. & TACHIHARA, K. 2005. Diet shift of larval and juvenile landlocked Ryukyu-ayu Plecoglossus altivelis ryukyuensis in the Fukuji Reservoir, Okinawa Island, Japan. Fisheries Science 71:10031009.Google Scholar
KELLY, J. F. 2000. Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78:127.Google Scholar
KUPFER, A., LANGEL, R., SCHEU, S., HIMSTEDT, W. & MARAUN, M. 2006. Trophic ecology of a tropical aquatic and terrestrial food web: insights from stable isotopes (15N). Journal of Tropical Ecology 22:469476.Google Scholar
KUPFERBERG, S. J. 1997. The role of larval diet in anuran metamorphosis. American Zoologist 37:146159.Google Scholar
LAYMAN, C. A., ARRINGTON, D. A., MONTANA, C. G. & POST, D. M. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:4248.Google Scholar
MARIOTTI, A. 1984. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685687.CrossRefGoogle Scholar
MCDIARMID, R. W. & ALTIG, R. 1999. Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago. 459 pp.Google Scholar
PETERSON, B. J. & FRY, B. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18:293320.Google Scholar
POILECOT, P. 1991. Un écosystème de savane soudanienne: Le Parc National de la Comoé (Côte d'Ivoire). UNESCO, Paris. 346 pp.Google Scholar
POST, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703718.Google Scholar
POWER, J. H. 1926. Note on the tadpoles of Cassina senegalensis Dum. & Bibr. Proceedings of the Zoological Society of London 95:427428.Google Scholar
RANVESTEL, A. W., LIPS, K. R., PRINGLE, C. M., WHILES, M. R. & BIXBY, R. J. 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology 49:274285.Google Scholar
RICHTER-BOIX, A., LLORENTE, G. A., MONTORI, A. & GARCIA, J. 2007. Tadpole diet selection varies with the ecological context in predictable ways. Basic and Applied Ecology 8:464474.Google Scholar
RÖDEL, M.-O. 1998. Kaulquappengesellschaften ephemerer Savannengewässer in Westafrika. Edition Chimaira, Frankfurt. 195 pp.Google Scholar
RÖDEL, M.-O. 2000. Herpetofauna of West Africa, Vol. I: Amphibians of the West African savanna. Edition Chimaira, Frankfurt. 335 pp.Google Scholar
RÖDEL, M.-O. & LINSENMAIR, K. E. 1997. Predator-induced swarms in the tadpoles of an African savanna frog, Phrynomantis microps (Anura: Microhylidae). Ethology 103:902914.Google Scholar
RÖDEL, M.-O. & SPIELER, M. 2000. Trilingual keys to the savannah-anurans of the Comoé National Park, Ivory Coast. Stuttgarter Beiträge zur Naturkunde Serie A 620:131.Google Scholar
RÖDEL, M.-O., LAMPERT, K. P. & LINSENMAIR, K. E. 2006. Reproductive biology of the West African savannah frog Hyperolius nasutus Günther, 1864 (Amphibia: Anura: Hyperoliidae). Herpetozoa 19:312.Google Scholar
RÖDEL, M.-O., GRÖZINGER, F., PFAHLER, A., THEIN, J. & GLOS, J. 2009. Eine einfache Methode zur quantitativen Erfassung von Amphibienlarven und anderen aquatischen Organismen. Methoden der Feldherpetologie. Zeitschrift für Feldherpetologie, Supplement 15:243256.Google Scholar
SAVAGE, R. M. 1952. Ecological, physiological and anatomical observations on some species of anuran tadpoles. Proceedings of the Zoological Society of London 122:467514.CrossRefGoogle Scholar
SEALE, D. B. & WASSERSUG, R. J. 1979. Suspension feeding dynamics of anuran larvae related to their functional morphology. Oecologia 39:259272.CrossRefGoogle ScholarPubMed
SEMLITSCH, R. D., SCOTT, D. E. & PECHMANN, J. H. K. 1988. Time and size at metamorphosis related to adult fitness in Ambystoma talpoideum . Ecology 69:184192.Google Scholar
SIMON, C. A. & MIDDENDORF, G. A. 1976. Resource partitioning by an iguanid lizard: temporal and microhabitat aspects. Ecology 57:13171320.Google Scholar
STRUCK, U., VOSS, M., MUMM, N. & BODUNGEN, B. V. 1998. Stable isotopes of nitrogen in fossil cladoceran exoskeletons: implications for nitrogen sources in the Baltic Sea during the last century. Naturwissenschaften 85:597603.Google Scholar
STRUCK, U., ALTENBACH, A.-V., GAULKE, M. & GLAW, F. 2002. Trophic segregation of some varanids (Reptilia: Varanidae) assessed by stable isotopes (δ15N, δ13C). Naturwissenschaften 89:470473.Google Scholar
TRAKIMAS, G., JARDINE, T. D., BARISEVIČIŪTĖ, R., GARBARAS, A., SKIPITYTĖ, R. & REMEIKIS, V. 2011. Ontogenetic dietary shifts in European common frog (Rana temporaria) revealed by stable isotopes. Hydrobiologia 675:8795.Google Scholar
WILBUR, H. M. 1977. Density-dependent aspects of growth and metamorphosis in Bufo americanus . Ecology 58:196200.Google Scholar
WILBUR, H. M. 1980. Complex life cycles. Annual Review of Ecology and Systematics 11:6793.CrossRefGoogle Scholar