Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T19:40:23.080Z Has data issue: false hasContentIssue false

Effects of climate and forest age on plant and caterpillar diversity in the Yucatan, Mexico

Published online by Cambridge University Press:  01 August 2014

Tijl Essens*
Affiliation:
El Colegio de la Frontera Sur, Avenida Centenario km 5.5., A.P 424, C.P. 77014, Chetumal, México Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales, Calle 43, no 130, C.P. 97200, Mérida, México
Euridice Leyequién
Affiliation:
Centro de Investigación Científica de Yucatán, Unidad de Recursos Naturales, Calle 43, no 130, C.P. 97200, Mérida, México
Carmen Pozo
Affiliation:
El Colegio de la Frontera Sur, Avenida Centenario km 5.5., A.P 424, C.P. 77014, Chetumal, México
Henricus F. M. Vester
Affiliation:
El Colegio de la Frontera Sur, Avenida Centenario km 5.5., A.P 424, C.P. 77014, Chetumal, México
Hector A. Hernández-Arana
Affiliation:
El Colegio de la Frontera Sur, Avenida Centenario km 5.5., A.P 424, C.P. 77014, Chetumal, México
*
1Corresponding author. Email: tijl.essens@gmail.com

Abstract:

Understanding patterns in plant and herbivorous insect diversity across spatial and temporal scales is fundamental to ecology, but comparative multi-taxonomic studies in tropical seasonally dry forests remain scarce. In 36 sites, distributed over three forest age classes (5–10 y, 10–30 y, >100 y) and three seasonal forest types (dry, intermediate, humid), we sampled plants of different stem diameter classes while caterpillars were sampled across vertically distributed forest layers during three seasons over the year. We recorded 299 plant species and 485 caterpillar morphospecies. For large woody plants, species numbers showed a gradually increasing trend with forest age in the intermediate and humid forest types, while the main portion of explained variation in overall species turnover was accounted for by the forest type × forest age interaction (21.3–23.1% of 44.4–48.7%). Ordinations and multivariate pairwise comparisons suggested a faster but also very distinct successional development of species diversity of large plants in the driest compared with humid and intermediate forest types. In contrast, highest species numbers of small plants in the undergrowth was often found in the 5–10 y-old vegetation across forest types, whereas forest type was the major factor in overall species turnover (contributing 24.2% of 48.7% explained variation). Caterpillar species turnover was most correlated to species turnover of small plants; however, variation in caterpillar species diversity appears to be mostly regulated by seasonal cues, and to a lesser extent by patterns of regional turnover and local diversity of undergrowth plant species.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ANDERSON, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology 26:3246.Google Scholar
ANDERSON, M. J. & WILLIS, T. J. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511525.CrossRefGoogle Scholar
AXMACHER, J. C., TÜNTE, H., SCHRUMPF, M., MÜLLER-HOHENSTEIN, K., LYARUU, H. V. M. & FIEDLER, K. 2004. Diverging diversity patterns of vascular plants and geometrid moths during forest regeneration on Mt. Kilimanjaro, Tanzania. Journal of Biogeography 31:895904.Google Scholar
BARLOW, H. S. & WOIWOD, I. P. 1990. Seasonality and diversity of Macrolepidoptera in two lowland sites in the Dumonga-Bone National Park, Sulawesi Utara. Pp. 167172 in Knight, W. J. & Holloway, J. D. (eds.). Insects and the rain-forests of South East Asia (Wallacea). The Royal Entomological Society, London.Google Scholar
BASSET, Y. 1996. Local communities of arboreal herbivores in Papua New Guinea: predictors of insect variables. Ecology 77:19061919.Google Scholar
BOBO, K. S., WALTERT, M., FERMON, H., NJOKAGBOR, J. & MÜHLENBERG, M. 2006. From forest to farmland: butterfly diversity and habitat associations along a gradient of forest conversion in Southwestern Cameroon. Journal of Insect Conservation 10:2942.CrossRefGoogle Scholar
BOWMAN, D. M. J. S., WOINARSKI, J. C. Z., SANDS, D. P. A., WELLS, A. & MCSHANE, V. J. 1990. Slash-and-burn agriculture in the wet coastal lowlands of Papua New Guinea: response of birds, butterflies and reptiles. Journal of Biogeography 17:227239.CrossRefGoogle Scholar
BROWN, K. S. 1997. Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoring. Journal of Insect Conservation 1:2542.Google Scholar
BROWN, S. & LUGO, A. E. 1990. Tropical secondary forests. Journal of Tropical Ecology 6:132.Google Scholar
CARR, A. 1999. Monitoring in the Selva Maya. Pp. 69 in Carr, A. & Stoll, A. C. D. (eds.). Biological monitoring in the Selva Maya. U.S. Man and the Biosphere Program/Tropical Ecosystem Directorate, Wildlife Conservation Society, Gainesville.Google Scholar
CHAZDON, R. L. 2008. Chance and determinism in tropical forest succession. Pp. 384408 in Carson, W. P. & Schnitzer, S. A. (eds.). Tropical forest community ecology. Blackwell Publishing, Chichester.Google Scholar
CHAZDON, R. L., LETCHER, S. G., VAN BREUGEL, M., MARTÍNEZ-RAMOS, M., BONGERS, F. & FINEGAN, B. 2007. Rates of change in tree communities of secondary Neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B 362:273289.CrossRefGoogle ScholarPubMed
CHOWDHURY, R. R. 2006. Landscape change in the Calakmul area: modeling the driving forces of smallholder deforestation in land parcels. Applied Geography 6:129152.Google Scholar
CLENCH, H. K. 1979. How to make regional lists of butterflies: some thoughts. Journal of the Lepidopterists’ Society 33:216231.Google Scholar
CLINEBELL, H. R. R., PHILLIPS, O. L., GENTRY, A. H., STARK, N. & ZUURING, H. 1995. Predictions of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation 4:5690.CrossRefGoogle Scholar
COLEY, P. D. 1998. Possible effects of climate change on plant-herbivore interactions in moist tropical forests. Climate Change 39:455472.Google Scholar
COLWELL, R. K. & LEES, D. C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15:7076.CrossRefGoogle ScholarPubMed
DENNIS, R. L. H., SHREEVE, T. G. & VAN DYCK, H. 2006. Habitats and resources: the need for a resource-based definition to conserve butterflies. Biodiversity and Conservation 15:19431966.CrossRefGoogle Scholar
DYER, L. A., SINGER, M. S., LILL, J. T., STIREMAN, J. O., GENTRY, G. L., MARQUIS, R. J., RICLEFS, R. E., GREENEY, H. F., WAGNER, D. L., MORAIS, H. C., DINIZ, I. R., KURSAR, T. A. & COLEY, P. D. 2007. Host specificity of Lepidoptera in tropical and temperate forest. Nature 448:696700.Google Scholar
DYER, L. A., WAGNER, D. L., GREENEY, H. F., SMILANICH, A. M., MASSAD, T. J., ROBINSON, M. L., FOX, M. S., HAZEN, R. F., GLASSMIRE, A. E., PARDIKES, N. A., FREDRICKSON, K. B., PEARSON, C. V., GENTRY, G. & STIREMAN, J. O. 2012. Novel insights into tritrophic interaction diversity and chemical ecology using 16 years of volunteer-supported research. American Entomologist 58:1519.CrossRefGoogle Scholar
ESSENS, T. & HERNÁNDEZ-STEFANONI, J. L. 2013. Mapping Lepidoptera and plant alpha-diversity across a heterogeneous tropical dry forest using field and remotely sensed data with spatial interpolation. Journal of Insect Conservation 17:725736.CrossRefGoogle Scholar
ESSENS, T., LEYEQUIEN, E. & POZO, C. 2010. Vegetation and Lepidoptera in seasonally dry forests. Community structure along climate zones, forest succession and seasonality in the southern Yucatan, Mexico. VDM Verlach, Saarbrücken. 81 pp.Google Scholar
FLOREN, A. & LINSENMAIR, K. E. 2001. The influence of anthropogenic disturbances on the structure of arboreal arthropod communities. Plant Ecology 153:153167.Google Scholar
FLOREN, A., BIUN, A. & LINSENMAIR, K. E. 2002. Arboreal ants as key predators in tropical lowland rainforest trees. Oecologia 131:137144.CrossRefGoogle ScholarPubMed
FLORES, J. S. & ESPEJEL, I. 1994. Tipos de vegetación de la Península de Yucatán. etnoflora yucatanense. Fascículo 3. Universidad Autónoma de Yucatán, Merida. 135 pp.Google Scholar
GENTRY, A. H. 1995. Diversity and floristic composition of neotropical dry forests. Pp. 146190 in Bullock, S. T., Mooney, H. A. & Medina, E. (eds.). Seasonally dry tropical forests. Cambridge University Press, Cambridge.Google Scholar
GIVNISH, T. J. 1999. On the causes of tropical tree diversity. Journal of Ecology 87:193210.CrossRefGoogle Scholar
HAMER, K. C., HILL, J. K., MUSTAFFA, N., BENEDICK, S., SHERRATT, T. N., CHEY, V. K. & MARYATI, M. 2005. Temporal variation in abundance and diversity of butterflies in Bornean rain forests: opposite impacts of logging recorded in different seasons. Journal of Tropical Ecology 21:417425.CrossRefGoogle Scholar
HEPPNER, J. B. 1991. Faunal regions and the diversity of Lepidoptera. Tropical Lepididoptera 2 (Suppl. 1):185.Google Scholar
HEPPNER, J. B. 2002. Mexican Lepidoptera biodiversity. Insecta Mundi 16:171190.Google Scholar
HERNÁNDEZ-STEFANONI, J. L., DUPUY, J. M., TUN-DZUL, F. & MAY-PAT, F. 2011. Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology 26:355370.CrossRefGoogle Scholar
HILL, J. K. & HAMER, K. C. 2004. Determining impacts of habitat modification on diversity of tropical forest fauna: the importance of spatial scale. Journal of Applied Ecology 41:744754.Google Scholar
HILT, N., BREHM, G. & FIEDLER, K. 2007. Temporal dynamics of rich moth assemblages in the montane forest zone in southern Ecuador. Biotropica 39:94104.Google Scholar
INTACHAT, J., HOLLOWAY, J. D. & STAINES, H. 2001. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. Journal of Tropical Ecology 17:411429.Google Scholar
JANZEN, D. H. 2003. How polyphagous are Costa Rican dry forest saturniid caterpillars? Pp. 369379 in Basset, Y., Novotny, V., Miller, S. E. & Kitching, R. L. (eds). Arthropods of tropical forests. Cambridge University Press, Cambridge.Google Scholar
KALACSKA, M., SANCHEZ-AZOFEIFA, G. A., CALVO-ALVARADO, J. C., RIVARD, B. & QUESADA, M. 2005. Effects of season and successional stage on leaf area index and spectral vegetation indices in three Mesoamerican tropical dry forests. Biotropica 37:486496.CrossRefGoogle Scholar
KENNARD, D. K. 2002. Secondary forest succession in a tropical dry forest: patterns of development across a 50-year chronosequence in lowland Bolivia. Journal of Tropical Ecology 18:5366.Google Scholar
KESSLER, M., ABRAHAMCZYK, S., SOS, M., BUCHORI, D., PUTRA, D. D., GRADSTEIN, R., HÖHN, P., KLUGE, J., OREND, F., PITOPANG, R., SALEH, S., SCHULZE, C. H., SPORN, S. G., STEFFAN-DEWENTER, I., TJITROSOEDIRDJO, S. S. & TSCHARNTKE, T. 2009. Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecological Applications 19:21422156.Google Scholar
KITCHING, R. L., ORR, A. G., THALIB, L., MITCHELL, H., HOPKINS, M. S. & GRAHAM, A. W. 2000. Moth assemblages as indicators of environmental quality in remnants of upland Australian rain forest. Journal of Applied Ecology 37:284297.Google Scholar
KLIMES, P., IDIGEL, C., RIMANDAI, M., FAYLE, T. M., JANDA, M., WEIBLEN, G. D. & NOVOTNY, V. 2012. Why are there more arboreal ant species in primary than in secondary tropical forests? Journal of Animal Ecology 81:11031112.CrossRefGoogle ScholarPubMed
KOH, L. P. 2007. Impacts of land use change on South-east Asian forest butterflies: a review. Journal of Applied Ecology 44:703713.CrossRefGoogle Scholar
KOH, L. P., SODHI, N. S. & BROOK, B. W. 2004. Co-extinctions of tropical butterflies and their hostplants. Biotropica 36:272274.Google Scholar
LAURANCE, W. F., LOVEJOY, T. E., VASCONCELOS, H. L., BRUNA, E. M., DIDHAM, R. K., STOUFFER, P. C., GASCON, C., BIERREGAARD, R. O., LAURANCE, S. G. & SAMPAIO, E. 2002. Ecosystem decay of Amazonian fragments: a 22-year investigation. Conservation Biology 16:605618.Google Scholar
LEBRIJA-TREJOS, E., BONGERS, F., PÉREZ-GARCÍA, E. A. & MEAVE, J. 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40:422431.Google Scholar
LEPŠ, J., NOVOTNÝ, V. & BASSET, Y. 2001. Habitat and successional status of plants in relation to the communities of their leaf-chewing herbivores in Papua New Guinea. Ecology 89:186199.Google Scholar
LEWINSOHN, T. M. & ROSLIN, T. 2008. Four ways towards tropical herbivore megadiversity. Ecology Letters 11:398416.CrossRefGoogle ScholarPubMed
LEWINSOHN, T. M., NOVOTNY, V. & BASSET, Y. 2005. Insects on plants: diversity of herbivore assemblages. Annual Review of Ecology, Evolution, and Systematics 36:597620.CrossRefGoogle Scholar
LLORENTE-BOUSQUETS, J., VARGAS-FERNANDEZ, I., LUIS-MARTÍNEZ, A., TRUJANO-ORTEGA, M., HERNÁNDEZ-MEJIA, B. C. Y. & WARREN, A. D. 2013. Biodiversidad de Lepidoptera en México. Revista Mexicana de Biodiversidad 85:353371.CrossRefGoogle Scholar
MADEIRA, B. G., ESPÍRITO-SANTO, M. M., ANGELO-NETO, S. D., NUNES, Y. R. F., SANCHEZ-AZOFEIFA, G. W. & QUESADA, F. M. 2009. Changes in tree and lianas communities along a successional gradient in a tropical dry forest in southeastern Brazil. Plant Ecology 201:291304.CrossRefGoogle Scholar
MARTÍNEZ, E. & GALINDO-LEAL, C. 2002. La vegetación de Calakmul: descripción, composición y distribución. Boletín de la Sociedad Botánica Méxicana 71:732.Google Scholar
MARQUIS, R. J. 1991. Herbivore fauna of Piper (Piperaceae) in a Costa Rican wet forest: diversity, specificity and impact. Pp. 179208 in Price, P. W., Lewinsohn, T. M., Fernandes, G. W. & Benson, W. W. (eds.). Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley & Sons, New York.Google Scholar
MCARDLE, B. H. & ANDERSON, M. J. 2001. Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82:290297.Google Scholar
MOLINA-COLÓN, S. & LUGO, A. E. 2006. Recovery of a subtropical dry forest after abandonment of different land uses. Biotropica 38:354364.Google Scholar
MONTERO-MUÑOZ, J. L., POZO, C. & CEPEDA-GONZÁLEZ, M. F. 2013. Recambio temporal de especies de Lepidópteros Nocturnos en función de la temperatura y la humedad en una zona de selva caducifolia en Yucatán, Mexico. Acta Zoologica Mexicana 29:613627.Google Scholar
NOVOTNÝ, V. 1994. Association of polyphagy in leafhoppers (Auchenorrhyncha, Hemiptera) with unpredictable environments. Oikos 70:223232.Google Scholar
NOVOTNÝ, V., MILLER, S. E., LEPŠ, J., BASSET, Y., BITO, D., JANDA, M., HULCR, J., DAMAS, K. & WEIBLEN, G. D. 2004. No tree an island: the plant-caterpillar food web of a secondary rain forest in New Guinea. Ecology Letters 7:10901100.Google Scholar
O'BRIEN, E. M., FIELD, R. & WHITTAKER, R. J. 2000. Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos 8:588600.Google Scholar
PARKER, G. G. 1995. Structure and microclimate of forest canopies. Pp. 73106 in Lowman, M. D. & Nadkarni, N. M. (eds.). Forest canopies. Academic Press, San Diego.Google Scholar
PORTILLO-QUINTERO, C. A. & SÁNCHEZ-AZOFEIFA, G. A. 2010. Extent and conservation of tropical dry forests in the Americas. Biological Conservation 143:144155.CrossRefGoogle Scholar
POZO, C., LUIS-MARTINEZ, A., UC-TESCUM, S., SALAZ-SUAREZ, N. & MAYA-MARTINEZ, A. 2003. Butterflies (Papilionoidea and Hesperioidea) of Calakmul, Campeche, Mexico. The Southwestern Naturalist 48:505525.Google Scholar
PRADO, B. R., POZO, C., VALDEZ-MORENO, M. & HEBERT, P. D. N. 2011. Beyond the colours: discovering hidden diversity in the Nymphalidae of the Yucatan peninsula in Mexico through DNA barcoding. PLOS ONE 6:111.Google Scholar
REAVEY, D. 1993. Why body size matters to caterpillars. Pp. 248279 in Stamp, N. E. & Casey, T. M. (eds.). Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York.Google Scholar
ROBINSON, G. S., ACKERY, P. R., KITCHING, I. J., BECCALONI, G. W. & HERNANDEZ, L. M. 2001. Hostplants of the moth and butterfly caterpillars of the Oriental Region. Natural History Museum, London, Southdene and Kuala Lumpur. 744 pp.Google Scholar
RUIZ, J., FANDIÑO, M. C. & CHAZDON, R. L. 2005. Vegetation structure, composition, and species richness across a 56-year chronosequence of dry tropical forest on Providencia Island, Colombia. Biotropica 37:520530.Google Scholar
SCHULZE, C. H., WALTERT, M., KESSLER, P. J., PITOPANG, R., SHAHABUDDIN, D. D., VEDDELER, M., MÜHLENBERG, R., GRADSTEIN, C., LEUSCHNER, I., STEFFAN-DEWENTER, N. & TSCHARNTKE, T. 2004. Biodiversity indicator groups of tropical land-use systems: comparing plants, birds, and insects. Ecological Applications 14:13211333.Google Scholar
SOBERÓN, J. & LLORENTE, J. 1993. The use of species accumulation functions for the prediction of the species richness. Conservation Biology 7:480488.Google Scholar
THOMPSON, G. G., WITHERS, P. C., PIANKA, E. R. & THOMPSON, S. 2003. Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Australian Ecology 28:361383.Google Scholar
TSCHARNTKE, T. & BRANDL, R. 2003. Plant-insects interactions in fragmented landscapes. Annual Review of Entomology 49:405430.CrossRefGoogle Scholar
TSCHARNTKE, T., SEKERCIOGLU, C. H., DIETSCH, T. V., SODHI, N. S., HOEHN, P. & TYLIANAKIS, J. M. 2007. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944951.CrossRefGoogle Scholar
TYLIANAKIS, J. M., KLEIN, A. M. & TSCHARNTKE, T. 2005. Spatio-temporal variation in the diversity of hymenoptera across a tropical habitat gradient. Ecology 86:32963302.Google Scholar
VAN ASCH, M. & VISSER, M. E. 2007. Phenology of forest caterpillars and their host trees: the importance of synchrony. Annual Review of Entomology 52:3755.Google Scholar
VAN SCHAIK, C. P., TERBORGH, J. W. & WRIGHT, S. J. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24:353377.Google Scholar
VESK, P. A. & WESTOBY, M. 2004. Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology 92:310320.CrossRefGoogle Scholar
VESTER, H. F. M., LAWRENCE, D., EASTMAN, J. R., TURNER, B. L., CALME, S., DICKSON, R., POZO, C. & SANGERMANO, F. 2007. Land change in the southern Yucatán and Calakmul biosphere reserve: implications for habitat and biodiversity. Ecological Applications 17:9891003.CrossRefGoogle ScholarPubMed
WELLING, E. C. 1973. A massive migration of Kricogonia (Pieridae) in Campeche, Mexico. Journal of the Lepidopterists’ Society 27:154155.Google Scholar
WOLDA, H. 1988. Insect seasonality: why? Annual Review of Ecology and Systematics 19:118.CrossRefGoogle Scholar