Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T10:14:37.034Z Has data issue: false hasContentIssue false

Effects of climate on pollination networks in the West Indies

Published online by Cambridge University Press:  01 September 2009

Ana M. Martín González*
Affiliation:
Unit of Ecology and Center for Ecological Research and Forestry Applications (CREAF), Autonomous University of Barcelona, ES 08193 Bellaterra, Barcelona, Spain Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark
Bo Dalsgaard
Affiliation:
Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark
Jeff Ollerton
Affiliation:
Landscape and Biodiversity Research Group, School of Applied Sciences, University of Northampton, Park Campus, Northampton NN2 7AL, UK
Allan Timmermann
Affiliation:
Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark
Jens M. Olesen
Affiliation:
Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark
Laila Andersen
Affiliation:
Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1540, DK-8000 Aarhus C, Denmark
Adrianne G. Tossas
Affiliation:
Villas del Río, 1100 Bambú, Mayagüez, Puerto Rico
*
1Corresponding author. Email: ana.maria.martingonzalez@gmail.com

Abstract:

We studied the effect of climate on the plant-pollinator communities in the West Indies. We constructed plots of 200 m × 5 m in two distinct habitats on the islands of Dominica, Grenada and Puerto Rico (total of six plots) and recorded visitors to all plant species in flower. In total we recorded 447 interactions among 144 plants and 226 pollinator species. Specifically we describe how rainfall and temperature affect proportional richness and importance of the different pollinator functional groups. We used three measures of pollinator importance: number of interactions, number of plant species visited and betweenness centrality. Overall rainfall explained most of the variation in pollinator richness and relative importance. Bird pollination tended to increase with rainfall, although not significantly, whereas insects were significantly negatively affected by rainfall. However, the response among insect groups was more complex; bees were strongly negatively affected by rainfall, whereas dipterans showed similar trends to birds. Bird, bee and dipteran variation along the climate gradient can be largely explained by their physiological capabilities to respond to rainfall and temperature, but the effect of climate on other insect pollinator groups was more obscure. This study contributes to the understanding of how climate may affect neotropical plant-pollinator communities.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIZEN, M. A. 2003. Down-facing flowers, hummingbirds and rain. Taxon 52:675680.Google Scholar
ARROYO, M. T. K., PRIMACK, R. & ARMESTO, J. 1982. Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. American Journal of Botany 69:8297.CrossRefGoogle Scholar
BUCKLEY, L. B. & ROUGHGARDEN, J. 2006. Climate, competition, and the coexistence of island lizards. Functional Ecology 20:315322.CrossRefGoogle Scholar
CRUDEN, R. W. 1972. Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science 176:14391440.CrossRefGoogle ScholarPubMed
DALSGAARD, B., HILTON, G. M., GRAY, G. A. L., AYMER, L., BOATSWAIN, J., DALEY, J., FENTON, C., MARTIN, J., MARTIN, L., MURRAIN, P., ARENDT, W. J., GIBBONS, D. W. & OLESEN, J. M. 2007. Impacts of a volcanic eruption on the forest bird community of Montserrat, Lesser Antilles. Ibis 149:298312.CrossRefGoogle Scholar
DALSGAARD, B., MARTÍN GONZÁLEZ, A. M., OLESEN, J. M., TIMMERMANN, A., ANDERSEN, L. H. & OLLERTON, J. 2008. Pollination networks and functional specialization: a test using Lesser Antillean plant-hummingbird assemblages. Oikos 117:789793.CrossRefGoogle Scholar
DALSGAARD, B., MARTÍN GONZÁLEZ, A. M., OLESEN, J. M., OLLERTON, J., TIMMERMANN, A., ANDERSEN, L. H. & TOSSAS, A. G. 2009. Plant-hummingbird interactions in the West Indies: floral specialization gradients associated with environment and hummingbird size. Oecologia 159:757766.CrossRefGoogle ScholarPubMed
DE NOOY, W., MRVAR, A. & BATAGELJ, V. 2005. Exploratory social network analysis with Pajek. Cambridge University Press, New York. 334 pp.CrossRefGoogle Scholar
DEVOTO, M., MEDAN, D. & MONTALDO, N. H. 2005. Patterns of interaction between plants and pollinators along an environmental gradient. Oikos 109:461472.CrossRefGoogle Scholar
DEVOTO, M., MEDAN, D., ROIG-ALSINA, A. & MONTALDO, N. H. 2009. Patterns of species turnover in plant-pollinator communities along a precipitation gradient in Patagonia (Argentina). Austral Ecology, In press.CrossRefGoogle Scholar
ELBERLING, H. & OLESEN, J. M. 1999. The structure of a high latitude plant-flower visitor system: the dominance of flies. Ecography 22:314323.CrossRefGoogle Scholar
ESTRADA, E. 2007. Characterization of topological keystone species. Local, global and “meso-scale” centralities in food webs. Ecological Complexity 4:4857.CrossRefGoogle Scholar
HAWKINS, B. A., FIELD, R., CORNELL, H. V., CURRIE, D. J., GUÉGAN, J. F., KAUFMAN, D. M., KERR, J. T., MITTELBACH, G. G., OBERDORFF, T., O'BRIEN, E., PORTER, E. E. & TURNER, J. R. G. 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:31053117.CrossRefGoogle Scholar
HEGLAND, S. T., NIELSEN, A., LÁZARO, A., BJERKNES, A. L. & TOTLAND, Ø. 2009. How does climate warming affect plant-pollinator interactions? Ecology Letters 12:184195.CrossRefGoogle ScholarPubMed
HODKINSON, I. D. 2005. Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews 80:489513.CrossRefGoogle ScholarPubMed
INGS, T. C., MONTOYA, J. M., BASCOMPTE, J., BLUTHGEN, N., BROWN, L., DORMANN, C. F., EDWARDS, F., FIGUEROA, D., JACOB, U., JONES, J. I., LAURIDSEN, R. B., LEDGER, M. E., LEWIS, H. M., OLESEN, J. M., VAN VEEN, F. J. F., WARREN, P. H. & WOODWARD, G. 2009. Ecological networks – beyond food webs. Journal of Animal Ecology 78:253269.CrossRefGoogle ScholarPubMed
JANZEN, D. H. 1973. Sweep samples of tropical foliage insects: effects of seasons, vegetation types, elevation, time of day, and insularity. Ecology 54:687701.CrossRefGoogle Scholar
JANZEN, D. H., ATAROFF, M., FARIÑAS, M., REYES, S., RINCON, N., SOLER, A., SORIANO, P. & VERA, M. 1976. Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8:193203.CrossRefGoogle Scholar
JORDAN, F., LIU, W. C. & DAVIS, A. J. 2006. Topological keystone species: measures of positional importance in food webs. Oikos 112:535546.CrossRefGoogle Scholar
KAY, K. M. & SCHEMSKE, D. W. 2003. Pollinator assemblages and visitation rates for 11 species of Neotropical Costus (Costaceae). Biotropica 35:198207.Google Scholar
KEARNS, C. A. 1992. Anthophilous fly distribution across an elevation gradient. American Midland Naturalist 127:172182.CrossRefGoogle Scholar
KESSLER, M. & KRÖMER, T. 2000. Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biology 2:659669.CrossRefGoogle Scholar
KEVAN, P. G. & BAKER, H. G. 1983. Insects as flower visitors and pollinators. Annual Review of Entomology 28:407453.CrossRefGoogle Scholar
KODRIC-BROWN, A., BROWN, J. H., BYERS, G. S. & GORI, D. F. 1984. Organisation of a tropical island community of hummingbirds and flowers. Ecology 65:13581368.CrossRefGoogle Scholar
KRÖMER, T., KESSLER, M. & HERZOG, S. K. 2006. Distribution and flowering ecology of bromeliads along two climatically contrasting elevational transects in the Bolivian Andes. Biotropica 38:183195.CrossRefGoogle Scholar
LACK, D. 1973. The number of species of hummingbirds in the West Indies. Evolution 27:326337.CrossRefGoogle ScholarPubMed
LACK, A. J., WHITEFOORD, C., EVANS, P. G. H., JAMES, A. & GREENOP, H. 1997. Dominica: nature island of Caribbean – series 5, illustrated flora. Dominica Ministry of Tourism, Roseau. 164 pp.Google Scholar
MACARTHUR, R. H. & WILSON, E. O. 1967. The theory of island biogeography. Princeton University Press, New Jersey. 203 pp.Google Scholar
MARTÍN GONZÁLEZ, A. M., DALSGAARD, B. & OLESEN, J. M. 2009. Centrality measures and the importance of generalist species in pollination networks. Ecological Complexity in press.CrossRefGoogle Scholar
MEDAN, D., MONTALDO, N. H., DEVOTO, M., MANTESE, A., VASELLATI, V., ROITMAN, G. G. & BARTOLONI, N. H. 2002. Plant-pollinator relationships at two altitudes in the Andes of Mendoza, Argentina. Arctic, Antarctic and Alpine Research 34:233241.CrossRefGoogle Scholar
MICHENER, C. D. 2000. The bees of the World. John Hopkins University Press, Baltimore. 913 pp.Google Scholar
OLESEN, J. M. & JORDANO, P. 2002. Geographic patterns in plant/pollinator mutualistic networks. Ecology 83:24162424.Google Scholar
OLLERTON, J. & CRANMER, L. 2002. Latitudinal trends in plant–pollinator interactions: are tropical plants more specialised? Oikos 98:340350.CrossRefGoogle Scholar
OLLERTON, J., JOHNSON, S. D. & HINGSTON, A. B. 2006. Geographical variation in diversity and specificity of pollination systems. Pp. 283308 in Waser, N. M. & Ollerton, J. (eds.). Plant–pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago.Google Scholar
PERCIVAL, M. 1974. Floral ecology of coastal scrub in southeast Jamaica. Biotropica 6:104129.CrossRefGoogle Scholar
PRIMACK, R. B. 1983. Insect pollination in the New Zealand mountain flora. New Zealand Journal of Botany 21:317333.CrossRefGoogle Scholar
RAFFAELE, H., WILEY, J., GARRIDO, O., KEITH, A. & RAFFAELE, J. 1998. Birds of the West Indies. Christopher Helm, London. 208 pp.Google Scholar
RATHCKE, B. J. 2000. Hurricane causes resource pollination limitation of fruit set in a bird-pollinated shrub. Ecology 81:19511958.CrossRefGoogle Scholar
RIVERA-MARCHAND, B. & ACKERMAN, J. D. 2006. Bat pollination breakdown in the Caribbean columnar cactus Pilosocereus royenii. Biotropica 38:635642.CrossRefGoogle Scholar
ROUBIK, D. 1989. Ecology and natural history of tropical bees. Cambridge Tropical Biology Series. Cambridge University Press, Cambridge. 514 pp.CrossRefGoogle Scholar
SAZIMA, I., BUZATO, S. & SAZIMA, M. 1996. An assemblage of hummingbird-pollinated flowers in a montane forest in Southeastern Brazil. Botanica Acta 109:149160.CrossRefGoogle Scholar
SMITH, D. S., MILLER, L. D. & MILLER, J. Y. 1994. The butterflies of the West Indies and South Florida. Oxford University Press, New York. 264 pp.Google Scholar
SPEARS, E. E. 1987. Island and mainland pollination ecology of Centrosema virginianum and Opuntia stricta. Journal of Ecology 75:351362.Google Scholar
STILES, G. F. 1978. Ecological and evolutionary implications of bird pollination. American Zoologist 18:715727.CrossRefGoogle Scholar
TANAKA, L. K. & TANAKA, S. K. 1982. Rainfall and seasonal changes in arthropod abundance on a tropical oceanic island. Biotropica 14:114123.CrossRefGoogle Scholar
TRIPLEHORN, C. A. & JOHNSON, N. F. 2005. Borror and DeLong's introduction to the study of insects. Thomson Brooks/Cole, Belmont. 864 pp.Google Scholar
WARREN, S. D., HARPER, K. T. & BOOTH, G. M. 1988. Elevational distribution of insect pollinators. American Midland Naturalist 120:325330.CrossRefGoogle Scholar
WASSERMAN, S. & FAUST, K. 1994. Social network analysis: methods and applications. Cambridge University Press, New York. 825 pp.CrossRefGoogle Scholar