Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T09:14:19.143Z Has data issue: false hasContentIssue false

Effects of forest fragmentation on the recruitment success of the tropical tree Poulsenia armata at Los Tuxtlas, Veracruz, Mexico

Published online by Cambridge University Press:  22 April 2014

Jenny Zambrano*
Affiliation:
Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St. (M/C 066), Chicago, Illinois 60706, USA
Rosamond Coates
Affiliation:
Los Tuxtlas Tropical Biological Station, Institute of Biology, UNAM, Apartado Postal 94, San Andres Tuxtla, Veracruz, CP 95701, Mexico
Henry F. Howe
Affiliation:
Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St. (M/C 066), Chicago, Illinois 60706, USA
*
1 Corresponding author. Email: jzambr3@uic.edu

Abstract:

Recruitment success of individual plants is limited by an array of biotic and abiotic factors. Seedling survival may experience high mortality due to negative density dependence or altered microclimatic conditions. This study reports regeneration of Poulsenia armata (Moraceae), in the fragmented landscape of the Los Tuxtlas region in south-eastern Mexico. Density, survival and growth of seedlings (<1 y) and juveniles (<150 cm height) of P. armata were predicted to be significantly lower in forest fragments compared with extensive continuous forest. Contrary to expectation, density did not vary between habitats; however, we found twice the number of seedlings (n = 82) in forest fragments than in the continuous forest (n = 35). Forest fragments were associated with higher seedling densities close to adult trees. Unexpectedly, we found no evidence for negative density dependence in plant survival or growth. Survival and growth of P. armata were negatively impacted in forest fragments, with desiccation by warmer daily temperatures likely the cause of mortality, independent of density. Of the 111 individuals recorded in 2010 in forest fragments, 38% died over 2 y of census (n = 42), while 9% (n = 12) of the 127 individuals from the continuous forest died. Higher rates of mortality suggest that conditions in forest fragments are detrimental to seedling cohorts over time. Low juvenile recruitment jeopardizes persistence of P. armata, in fragmented populations of this rain-forest tree.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIDE, T. M. & RIVERA, E. 1998. Geographic patterns of genetic diversity in Poulsenia armata (Moraceae): implications for the theory of Pleistocene refugia and the importance of riparian forest. Journal of Biogeography 25:695705.Google Scholar
ALVAREZ-LOAYZA, P. & TERBORGH, J. 2011. Fates of seedling carpets in an Amazonian floodplain forest: intra-cohort competition or attack by enemies? Journal of Ecology 99:10451054.Google Scholar
ANZURES-DADDA, A., ANDRESEN, E., MARTÍNEZ, M. L. & MANSON, R. H. 2011. Absence of howlers (Alouatta palliata) influences tree seedling densities in tropical rain forest fragments in southern Mexico. International Journal of Primatology 32:634651.Google Scholar
ARROYO-RODRIGUEZ, V. & MANDUJANO, S. 2006. The importance of tropical rain forest fragments to the conservation of plant species diversity in Los Tuxtlas, Mexico. Biodiversity and Conservation 15:41594179.Google Scholar
ARROYO-RODRIGUEZ, V., AGUIRRE, A., BENITEZ-MALVIDO, J. & MANDUJANO, S. 2007. Impact of rain forest fragmentation on the population size of a structurally important palm species: Astrocaryum mexicanum at Los Tuxtlas, Mexico. Biological Conservation 138:198206.Google Scholar
BENITEZ-MALVIDO, J. 1998. Impact of forest fragmentation on seedling abundance in a tropical rain forest. Conservation Biology 12:380389.Google Scholar
BRUNA, E. M. 2002. Effects of forest fragmentation on Heliconia acuminata seedling recruitment in central Amazonia. Oecologia 132:235243.Google Scholar
BRUNA, E. M. 2003. Are plant populations in fragmented habitats recruitment limited? Tests with an Amazonian herb. Ecology 84:932947.Google Scholar
BONGERS, F., POPMA, J., CASTILLO, J. M. & CARABIAS, J. 1988. Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:5580.Google Scholar
BREWER, S. W., REJMANEK, M., WEBB, M. A. H. & FINE, P. V. A. 2003. Relationships of phytogeography and diversity of tropical tree species with limestone topography in southern Belize. Journal of Biogeography 30:16691688.Google Scholar
BRUNA, E. M. 2002. Effects of forest fragmentation on Heliconia acuminata seedling recruitment in central Amazonia. Oecologia 132:235243.Google Scholar
CHAPMAN, C. A. & CHAPMAN, L. J. 1995. Survival without dispersers: seedling recruitment under parents. Conservation Biology 9:675678.Google Scholar
CHAVE, J., MULLER-LANDAU, H. C., BAKER, T. R., EASDALE, T. A., TER STEEGE, H. & WEBB, C. O. 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications 16:23562367.Google Scholar
CLARK, D. B. & CLARK, D. A. 1989. The role of physical damage in the seedling mortality regime of a neotropical rain forest. Oikos 55:225230.Google Scholar
COMITA, L. S. & HUBBELL, S. P. 2009. Local neighborhood and species’ shade tolerance influence survival in a diverse seedling bank. Ecology 90:328334.Google Scholar
COMITA, L. S., MULLER-LANDAU, H. C., AGUILAR, S. & HUBBELL, S. P. 2010. Asymmetric density dependence shapes species abundances in a tropical tree community. Science 329:330332.Google Scholar
CONDIT, R., HUBBELL, S.P. & FOSTER, R.B. 1995. Mortality rates of 205 neotropical tree and shrub species and the impact of severe drought. Ecological Monographs 65:419439.Google Scholar
CONDIT, R., HUBBELL, S.P. & FOSTER, R.B. 1996. Changes in tree species abundance in a Neotropical forest: impact of climate change. Journal of Tropical Ecology 12:231236.Google Scholar
CONNELL, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298312 in den Boer, P. J. & Gradwell, G. (eds.). Dynamics of populations. PUDOC, Wageningen.Google Scholar
CORDEIRO, N. J. & HOWE, H. F. 2001. Low recruitment of trees dispersed by animals in African forest fragments. Conservation Biology 15:17331741.Google Scholar
CROAT, T. E. 1978. Flora of Barro Colorado Island. Stanford University Press, Stanford, CA.Google Scholar
DE LA QUINTANA, D. 2005. Diversidad florística y estructura de una parcela permanente en un bosque amazónico preandino del sector del Río Hondo, Area Natural de Manejo Integrado Madidi (La Paz, Bolivia). Ecología en Bolivia: revista del Instituto de Ecología 40:418442.Google Scholar
DICK, C. W., LEWIS, S. L., MASLIN, M. & BERMINGHAM, E. 2013. Neogene origins and implied warmth tolerance of Amazon tree species. Ecology and Evolution 3:162169.Google Scholar
DIRZO, R., MENDOZA, E. & ORTÍZ, P. 2007. Size-related differential seed predation in a heavily defaunated Neotropical rain forest. Biotropica 39:355362.Google Scholar
EFFIOM, E. O., NUNEZ-ITURRI, G., SMITH, H. G., OTTOSSON, U. & OLSSON, O. 2013. Bushmeat hunting changes regeneration of African rainforests. Proceedings of the Royal Society B – Biological Sciences 280:1759–1771.Google Scholar
ESTRADA, A. & COATES-ESTRADA, R. 1984. Fruit eating and seed dispersal by howling monkeys (Alouatta palliata) in the tropical rain forest of Los Tuxtlas, Mexico. American Journal of Primatology 6:7791.Google Scholar
ESTRADA, A., COATES-ESTRADA, R. & MERRIT, D. 1994. Non flying mammals and landscape changes in the tropical rain forest region of Los Tuxtlas, Mexico. Ecography, 17:229241.Google Scholar
FLETCHER, D., MACKENZIE, D. & VILLOUTA, E. 2005. Modelling skewed data with many zeros: a simple approach combining ordinary and logistic regression. Environmental and Ecological Statistics 12:4554.Google Scholar
GARCIA-AGUIRRE, M. C., ALVAREZ, R., DIRZO, R., ORTIZ, M. A. & ENG, M. M. 2010. Delineation of biogeomorphic land units across a tropical natural and humanized terrain in Los Tuxtlas, Veracruz, Mexico. Geomorphology 121:245256.Google Scholar
GARCÍA-GUZMÁN, G. & DIRZO, R. 2004. Incidence of leaf pathogens in the canopy of a Mexican tropical wet forest. Plant Ecology 172: 4150.CrossRefGoogle Scholar
GUEVARA, S., LABORDE, J. & SANCHEZ-RIOS, G. 2004. Rain forest regeneration beneath the canopy of fig trees isolated in pastures of Los Tuxtlas, Mexico. Biotropica 36:99108.Google Scholar
HARMS, K. E., WRIGHT, S. J., CALDERON, O., HERNANDEZ, A. & HERRE, E. A. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493495.Google Scholar
HIGUCHI, H., SAKURATANI, T. & UTSUNOMIYA, N. 1999. Photosynthesis, leaf morphology, and shoot growth as affected by temperatures in cherimoya (Annona cherimola Mill.) trees. Scientia Horticulturae 80:91104.Google Scholar
HOWE, H. F. 1989. Scatter-and clump-dispersal and seedling demography: hypothesis and implications. Oecologia 79:417426.Google Scholar
HOWE, H. F. & MIRITI, M. N. 2004. When seed dispersal matters. Bioscience 54:651660.Google Scholar
HOWE, H. F. & SMALLWOOD, J. 1982. Ecology of seed dispersal. Annual Review of Ecology and Systematics 13:201228.Google Scholar
JANZEN, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501.Google Scholar
JORGE, M. & HOWE, H. F. 2009. Can forest fragmentation disrupt a conditional mutualism? A case from central Amazon. Oecologia 161:709718.Google Scholar
KAPOS, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology 5:173185.Google Scholar
KITAJIMA, K. & FENNER, M. 2000. Ecology of seedling regeneration. Pp. 331359 in Fenner, M. (ed.). Seeds, the ecology of regeneration in plant communities. CAB International, Wallingford.Google Scholar
LAURANCE, W. F., FERREIRA, L. V., RANKIN-DE MERONA, J. M., LAURANCE, S. G., HUTCHINGS, R. W. & LOVEJOY, T. E. 1998. Effects of forest fragmentation on recruitment patterns in Amazonian tree communities. Conservation Biology 12:460464.Google Scholar
MALCOLM, J. R. 1998. A model of conductive heat flow in forest edges and fragmented landscapes. Climatic Change 39:487502.Google Scholar
MARTIN, T. G., WINTLE, B. A., RHODES, J. R., KUHNERT, P. M., FIELD, S. A., LOW-CHOY, S. J., TYRE, A. J. & POSSINGHAM, H. P. 2005. Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecology Letters 8:12351246.Google Scholar
MARTINEZ-GALLARDO, R. & SANCHEZ-CORDERO, V. 1993. Dietary value of fruits and seeds to Spiny Pocket Mice, Heteromys desmarestianus (Heteromyidae). Journal of Mammalogy 74:436442.Google Scholar
MARTÍNEZ-GARZA, C., PENA, V., RICKER, M., CAMPOS, A. & HOWE, H. F. 2005. Restoring tropical biodiversity: leaf traits predict growth and survival of late-successional trees in early-successional environments. Forest Ecology and Management 217:365379.Google Scholar
MARTÍNEZ-GARZA, C., BONGERS, F. & POORTER, L. 2013a. Are functional traits good predictors of species performance in restoration plantings in tropical abandoned pastures? Forest Ecology and Management 303:3545.Google Scholar
MARTÍNEZ-GARZA, C., TOBON, W., CAMPO, J. & HOWE, H. 2013b. Drought mortality of tree seedlings in an eroded tropical pasture. Land Degradation and Development 24: 287295.Google Scholar
MCDOWELL, N. G., PHILLIPS, N., LUNCH, C., BOND, B. J. & RYAN, M. G. 2002. An investigation of hydraulic limitation and compensation in large, old Douglas-fir trees. Tree Physiology 22:763774.Google Scholar
MENDOZA, E., FAY, J. & DIRZO, R. 2005. A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. Revista Chilena de Historia Natural 78:451467.Google Scholar
MULLER-LANDAU, H. C. 2007. Predicting the long-term effects of hunting on plant species composition and diversity in tropical forests. Biotropica 39:372384.Google Scholar
NATHAN, R. & MULLER-LANDAU, H. C. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology and Evolution 15:278285.Google Scholar
NUÑEZ-ITURRI, G., OLSSON, O. & HOWE, H. F. 2008. Hunting reduces recruitment of primate-dispersed trees in Amazonian Peru. Biological Conservation 141:15361546.Google Scholar
RODRIGUEZ, M. D., OROZCO-SEGOVIA, A., SANCHEZ-CORONADO, M. E. & VAZQUEZ-YANES, C. 2000. Seed germination of six mature neotropical rain forest species in response to dehydration. Tree Physiology 20:693699.Google Scholar
RUSSO, S. E., PORTNOY, S. & AUGSPURGER, C. K. 2006. Incorporating animal behavior into seed dispersal models: implications for seed shadows. Ecology 87:31603174.Google Scholar
SAKAI, J. 2001. Thrips pollination of androdioecious Castilla elastica (Moraceae) in a seasonal tropical forest. American Journal of Botany 88:15271534.Google Scholar
SCHUPP, E. W., MILLERON, T. & RUSSO, S. E. 2002. Dissemination limitation and the origin and maintenance of species-rich tropical forests. Pp. 1934 in Levey, D. J., Silva, R. W. & Galetti, M. (eds). Seed dispersal and frugivory: ecology, evolution and conservation. CABI Publishing, New York.Google Scholar
SAXE, H., CANNELL, M. G., JOHNSEN, Ø., RYAN, M. G. & VOURLITIS, G. 2001. Tree and forest functioning in response to global warming. New Phytologist 149:369399.Google Scholar
SETHI, P. & HOWE, H. F. 2009. Recruitment of hornbill-dispersed trees in hunted and logged forests of the Indian eastern Himalaya. Conservation Biology 23:710718.CrossRefGoogle ScholarPubMed
SMITH, D. N. & KILLEEN, T. J. 1998. A comparison of the structure and composition of montane and lowland tropical forest in the Serranía Pilón Lajas, Beni, Bolivia. Man and the Biosphere Series 21:681700.Google Scholar
TERBORGH, J. 2012. Enemies maintain hyperdiverse tropical forests. American Naturalist 179:303314.Google Scholar
TERBORGH, J., NUNEZ-ITURRI, G., PITMAN, N. C. A., VALVERDE, F. H. C., ALVAREZ, P., SWAMY, V., PRINGLE, E. G. & PAINE, C. E. T. 2008. Tree recruitment in an empty forest. Ecology 89:17571768.Google Scholar
TREJO-PÉREZ, L., GOMEZ-COMPA, A. & VASQUEZ-YANES, C. 1976. Diseminacion de semillas por aves en “Los Tuxtlas”. Pp. 447470 in Gomez-Pompa, A., Vazquez-Yanes, C., del Amo Rodríguez, S. & Butanda, C. (eds.). Regeneración de Selvas. Compania Editorial Continental, México.Google Scholar
TURNBULL, L. A., CRAWLEY, M. J. & REES, M. 2000. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 88:225238.Google Scholar
VAZQUEZ-YANES, C., OROZCO, A., FRANÇOIS, G. & TREJO, L. 1975. Observations on seed dispersal by bats in a tropical humid region in Veracruz, Mexico. Biotropica 7:7376.Google Scholar
WRIGHT, S. J. 2003. The myriad consequences of hunting for vertebrates and plants in tropical forests. Perspectives in Plant Ecology Evolution and Systematics 6:7386.Google Scholar
WRIGHT, S. J. & DUBER, H. C. 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyracea, with implications for tropical tree diversity. Biotropica 33:583595.Google Scholar