Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T04:45:28.538Z Has data issue: false hasContentIssue false

Effects of seasonality, litter removal and dry-season irrigation on litterfall quantity and quality in eastern Amazonian forest regrowth, Brazil

Published online by Cambridge University Press:  01 January 2008

Steel Silva Vasconcelos*
Affiliation:
School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611-0760, USA
Daniel Jacob Zarin
Affiliation:
School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611-0760, USA
Maristela Machado Araújo
Affiliation:
Universidade Federal de Santa Maria, Santa Maria, RS 97105-900, Brazil
Lívia Gabrig Turbay Rangel-Vasconcelos
Affiliation:
Universidade Federal Rural da Amazônia, Belém, PA 66077-530, Brazil
Cláudio José Reis de Carvalho
Affiliation:
Embrapa Amazônia Oriental, Belém, PA 66095-100, Brazil
Christina Lynn Staudhammer
Affiliation:
School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611-0760, USA
Francisco de Assis Oliveira
Affiliation:
Universidade Federal Rural da Amazônia, Belém, PA 66077-530, Brazil
*
1Corresponding author. Current address: Embrapa Amazônia Oriental, Laboratório de Ecofisiologia e Propagação de Plantas, P.O. Box 48, Belém, PA 66095-100, Brazil. E-mail: steel@cpatu.embrapa.br

Abstract:

Litterfall quantity and quality may respond to alterations in resource availability expected with ongoing land-use and climate changes. Here, we quantify the effects of altered resource availability on non-woody litterfall quantity and quality (nitrogen and phosphorus concentrations) in eastern Amazonian forest regrowth (Brazil) through two multi-year experimental manipulations: (1) daily irrigation (5 mm d−1) during the dry season; and (2) fortnightly litter removal. Consistent with other tropical forest data litterfall exhibited seasonal patterns, increasing with the onset of the dry season and declining with the onset of the rainy season. Irrigation did not affect litterfall mass and had little impact on nitrogen (N) or phosphorus (P) concentrations and return, except for decreasing litter P concentration at the end of two irrigation periods. Litter removal did not alter litterfall mass or P concentration, but progressively reduced litterfall N during the course of the experiment. Overall, these results suggest significant resistance to altered resource availability within the bounds of our experimental treatments; our findings may help to constrain carbon and nutrient cycling predictions for tropical forests in response to land-use and climate changes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AERTS, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439449.CrossRefGoogle Scholar
AERTS, R. & CHAPIN, F. S. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research 30:167.Google Scholar
ANDERSON, J. M. & INGRAM, J. S. I. 1996. Tropical soil biology and fertility. A handbook of methods. CAB International, Wallingford. 221 pp.Google Scholar
BOONE, R. D., GRIGAL, D. F., SOLLINS, P., AHRENS, R. J. & ARMSTRONG, D. E. 1999. Soil sampling, preparation, archiving, and quality control. Pp. 328 in Sollins, P. (ed.). Standard soil methods for long-term ecological research. Oxford University Press, Oxford.CrossRefGoogle Scholar
CAMPO, J. & VÁZQUEZ-YANES, C. 2004. Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems 7:311319.CrossRefGoogle Scholar
CAVELIER, J., WRIGHT, S. J. & SANTAMARÍA, J. 1999. Effects of irrigation on litterfall, fine root biomass and production in a semideciduous lowland forest in Panama. Plant and Soil 211:207213.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R., NI, J. & HOLLAND, E. A. 2001a. Net primary production in tropical forests: an evaluation and synthesis of existing field data. Ecological Applications 11:371384.CrossRefGoogle Scholar
CLARK, D. A., BROWN, S., KICKLIGHTER, D. W., CHAMBERS, J. Q., THOMLINSON, J. R. & NI, J. 2001b. Measuring net primary production in forests: concepts and field methods. Ecological Applications 11:356370.CrossRefGoogle Scholar
COELHO, R. DE F. R., ZARIN, D. J., MIRANDA, I. S. & TUCKER, J. M. 2004. Análise florística e estrutural de uma floresta em diferentes estágios sucessionais no município de Castanhal, Pará. Acta Amazonica 33:563582.CrossRefGoogle Scholar
CUEVAS, E. & MEDINA, E. 1986. Nutrient dynamics within Amazonian forest ecosystems I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466472.CrossRefGoogle ScholarPubMed
DANTAS, M. & PHILLIPSON, J. 1989. Litterfall and litter nutrient content in primary and secondary Amazonian “terra firme” rain forest. Journal of Tropical Ecology 5:2736.CrossRefGoogle Scholar
DAVIDSON, E. A., CARVALHO, C. J. R. DE, VIEIRA, I. C. G., FIGUEIREDO, R. DE O., MOUTINHO, P., ISHIDA, F. Y., SANTOSM. T. P., DOS M. T. P., DOS, GUERRERO, J. B., KALIF, K. & SABÁ, R. T. 2004. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecological Applications 14:S150S163.CrossRefGoogle Scholar
DIAS, H. K. O. 2006. Vegetação, chuva de sementes e banco de sementes do solo em floresta secundária sob manipulação de água, Pará, Amazônia Oriental, Brasil. Masters thesis, Universidade Federal Rural da Amazônia, Belém.Google Scholar
EVINER, V. T., CHAPIN, F. S. & VAUGHN, C. E. 2000. Nutrient manipulations in terrestrial ecosystems. Pp. 291307 in Howarth, R. W. (ed.). Methods in ecosystem science. Springer-Verlag, New York.CrossRefGoogle Scholar
FEARNSIDE, P. M. 1996. Amazonian deforestation and global warming: carbon stocks in vegetation replacing Brazil's Amazon forest. Forest Ecology and Management 80:2134.CrossRefGoogle Scholar
FORTINI, L. B., MULKEY, S. S., ZARIN, D. J., VASCONCELOS, S. S. & CARVALHO, C. J. R. DE 2003. Drought constraints on leaf gas exchange by Miconia ciliata (Melastomataceae) in the understory of an eastern Amazonian regrowth forest stand. American Journal of Botany 90:10641070.CrossRefGoogle ScholarPubMed
FRIZANO, J., VANN, D. R., JOHNSON, A. H., JOHNSON, C. M., VIEIRA, I. C. G. & ZARIN, D. J. 2003. Labile phosphorus in soils of forest fallows and primary forest in the Bragantina region, Brazil. Biotropica 35: 211.Google Scholar
GEHRING, C., DENICH, M., KANASHIRO, M. & VLEK, P. L. G. 1999. Response of secondary vegetation in Eastern Amazonia to relaxed nutrient availability constraints. Biogeochemistry 45:223241.CrossRefGoogle Scholar
HANSON, P. J. 2000. Large-scale water manipulations. Pp. 341380 in Howarth, R. W. (ed.). Methods in ecosystem science. Springer-Verlag, New York.CrossRefGoogle Scholar
HARRINGTON, R. A., FOWNES, J. H. & VITOUSEK, P. M. 2001. Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilization. Ecosystems 4:646657.CrossRefGoogle Scholar
HERBERT, D. A., WILLIAMS, M. & RASTETTER, E. B. 2003. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65:121150.CrossRefGoogle Scholar
IPCC 2007. Climate change 2007: impacts, adaptation and vulnerability. IPCC Secretariat, Geneva. 22 pp.Google Scholar
JIPP, P. H., NEPSTAD, D. C., CASSEL, D. K. & DE CARVALHO, C. R. 1998. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change 39:395412.CrossRefGoogle Scholar
KOERSELMAN, W. & MEULEMAN, A. F. M. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:14411450.CrossRefGoogle Scholar
LAWRENCE, D. 2005. Regional-scale variation in litter production and seasonality in tropical dry forests of southern Mexico. Biotropica 37:561570.CrossRefGoogle Scholar
LEAN, J., BUNTON, C. B., NOBRE, C. A. & ROWNTREE, P. R. 1996. The simulated impact of Amazonian deforestation on climate using measured ABRACOS vegetation characteristics. Pp. 549576 in Victoria, R. L. (ed.). Amazonian deforestation and climate. John Wiley & Sons, New York.Google Scholar
LI, Y., XU, M. & ZOU, X. 2006. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest. Global Change Biology 12:284293.CrossRefGoogle Scholar
LODGE, D. J., MCDOWELL, W. H. & MCSWINEY, C. P. 1994. The importance of nutrient pulses in tropical forests. Trends in Ecology and Evolution 9:384387.CrossRefGoogle ScholarPubMed
LUIZAO, F. J. 1989. Litter production and mineral element input to the forest floor in a central Amazonian forest. GeoJournal 19:407417.CrossRefGoogle Scholar
LUIZÃO, R. C., LUIZÃO, F. J., PAIVA, R. Q., MONTEIRO, T. F., SOUSA, L. S. & KRUIJT, B. 2004. Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology 10:592600.CrossRefGoogle Scholar
MARKEWITZ, D., DAVIDSON, E., MOUTINHO, P. & NEPSTAD, D. 2004. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecological Applications 14:S177S199.CrossRefGoogle Scholar
MARSCHNER, H. 1995. Mineral nutrition of higher plants. Academic Press, San Diego. 889 pp.Google Scholar
McGRATH, D. A., DURYEA, M. L. & CROPPER, W. P. 2001. Soil phosphorus availability and fine root proliferation in Amazonian agroforests 6 years following forest conversion. Agriculture, Ecosystems and Environment 83:271284.CrossRefGoogle Scholar
MIRMANTO, E., PROCTOR, J.GREEN, J., NAGY, L. & SURIANTATA, 1999. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philosophical Transactions of the Royal Society of London B 354:18251829.CrossRefGoogle Scholar
MURPHY, J., & RILEY, J. P. 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27:3136.CrossRefGoogle Scholar
NEWMAN, G. S., ARTHUR, M. A. & MULLER, R. N. 2006. Above- and belowground net primary production in a temperate mixed deciduous forest. Ecosystems 9:317329.CrossRefGoogle Scholar
PROCTOR, J. 1983. Tropical forest litterfall. I. Problems of data comparison. Pp. 267273 in Sutton, S. L., Whitmore, T. C. & Chadwick, A. C. (ed.). Tropical rain forest: ecology and management. Blackwell Scientific Publications, Oxford.Google Scholar
RANGEL-VASCONCELOS, L. G. T. 2002. Biomassa microbiana de solo sob vegetação secundária na Amazônia oriental. Masters thesis, Faculdade de Ciências Agrárias do Pará, Belém.Google Scholar
READ, L. & LAWRENCE, D. 2003. Litter nutrient dynamics during succession in dry tropical forests of the Yucatan: regional and seasonal effects. Ecosystems 6:747761.CrossRefGoogle Scholar
SANCHEZ, P. A. 1976. Properties and management of soils in the tropics. John Wiley and Sons, New York. 630 pp.Google Scholar
SAYER, E. J. 2005. Leaf litter manipulation in a tropical forest. Doctoral dissertation, University of Cambridge, Cambridge.Google Scholar
SCOTT, D. A., PROCTOR, J. & THOMPSON, J. 1992. Ecological studies on a lowland evergreen rain forest on Maracá Island, Roraima, Brazil. II. Litter and nutrient cycling. Journal of Ecology 80:705717.CrossRefGoogle Scholar
SHUTTLEWORTH, W. J., GASH, J. H. C., LLOYD, C. R., MOORE, C. J., ROBERTS, J., MARQUES, A. D., FISCH, G., SILVA, V. D., RIBEIRO, M. D. G., MOLION, L. C. B., SA, L. D. D., NOBRE, J. C. A., CABRAL, O. M. R., PATEL, S. R. & DEMORAES, J. C. 1984. Eddy correlation measurements of energy partition for Amazonian forests. Quarterly Journal of the Royal Meteorological Society 110:11431162.CrossRefGoogle Scholar
SMITH, K., GHOLZ, H. L. & OLIVEIRA, F. D. A. 1998. Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. Forest Ecology and Management 109:209220.CrossRefGoogle Scholar
SOMMER, R., , T. D. D. A., VIELHAUER, K., ARAÚJO, A. C. D., FÖLSTER, H. & VLEK, P. L. G. 2002. Transpiration and canopy conductance of secondary vegetation in the eastern Amazon. Agricultural and Forest Meteorology 112:103121.CrossRefGoogle Scholar
TENÓRIO, A. R. D. M., GRAÇA, J. J. D. C., GÓES, J. E. M., MENDEZ, J. G. R., GAMA, J. R. M. F., SILVA, P. R. O. D., CHAGAS, P. S. M. D., SILVA, R. N. P. D., AMÉRICO, R. R. & PEREIRA, W. L. M. 1999. Mapeamento dos solos da estação de piscicultura de Castanhal, PA. FCAP Informe Técnico 25:526.Google Scholar
TRENBERTH, K. E. & HOAR, T. J. 1997. El Niño and climate change. Geophysical Research Letters 24:30573060.CrossRefGoogle Scholar
UHL, C. 1987. Factors controlling succession following slash-and-burn agriculture in Amazonia. Journal of Ecology 75:377407.CrossRefGoogle Scholar
VASCONCELOS, S. S., ROSA, M. B. DOS S., ZARIN, D. J., OLIVEIRA, F. DE A. & CARVALHO, C. J. R. DE 2007. Leaf decomposition in a dry season irrigation experiment in eastern Amazonian forest regrowth. Biotropica 35: 593600.CrossRefGoogle Scholar
VASCONCELOS, S. S., ZARIN, D. J., CAPANU, M., LITTELL, R., DAVIDSON, E. A., ISHIDA, F. Y., SANTOS, E. B., ARAÚJO, M. M., ARAGÃO, D. V., RANGEL-VASCONCELOS, L. G. T., OLIVEIRA, F. DE A., MCDOWELL, W. H. & DE CARVALHO, C. J. R. 2004. Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochemical Cycles 18: GB2009, doi:10.1029/2003GB002210.CrossRefGoogle Scholar
VITOUSEK, P. M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285298.CrossRefGoogle Scholar
VITOUSEK, P. M. & SANFORD, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17:137167.CrossRefGoogle Scholar
WHIGHAM, D. F., TOWLE, P. Z., CANO, E. C., NEILL, J. O. & LEY, E. 1990. The effect of annual variation in precipitation on growth and litter production in a tropical dry forest in the Yucatan of Mexico. Tropical Ecology 31:2334.Google Scholar
WIEDER, R. K. & WRIGHT, S. J. 1995. Tropical forest litter dynamics and dry season irrigation on Barro Colorado Island, Panama. Ecology 76:19711979.CrossRefGoogle Scholar
WOOD, T. E., LAWRENCE, D. & CLARK, D. A. 2005. Variation in leaf litter nutrients of a Costa Rican rain forest is related to precipitation. Biogeochemistry 73:417437.CrossRefGoogle Scholar
YAVITT, J. B. & WRIGHT, S. J. 1996. Temporal patterns of soil nutrients in a Panamanian moist forest revealed by ion-exchange resin and experimental irrigation. Plant and Soil 183:117129.CrossRefGoogle Scholar
YAVITT, J. B., WRIGHT, S. J. & WIEDER, R. K. 2004. Seasonal drought and dry-season irrigation influence leaf-litter nutrients and soil enzymes in a moist, lowland forest in Panama. Austral Ecology 29:177188.CrossRefGoogle Scholar
ZAGT, R. J. 1997. Pre-dispersal and early post-dispersal demography, and reproductive litter production, in the tropical tree Dicymbe altsonii in Guyana. Journal of Tropical Ecology 13:511526.CrossRefGoogle Scholar
ZARIN, D. J., DUCEY, M. J., TUCKER, J. M. & SALAS, W. A. 2001. Potential biomass accumulation in Amazonian regrowth forests. Ecosystems 4:658668.CrossRefGoogle Scholar
ZARIN, D. J., DAVIDSON, E. A., BRONDIZIO, E., VIEIRA, I. C. G., , T., FELDPAUSCH, T., SCHUUR, E. A. G., MESQUITA, R., MORAN, E., DELAMONICA, P., DUCEY, M. J., HURTT, G. C., SALIMON, C. & DENICH, M. 2005. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and Environment 3:365369.CrossRefGoogle Scholar