Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T05:07:22.477Z Has data issue: false hasContentIssue false

Forests on ultramafic-derived soils in Borneo have very depauperate termite assemblages

Published online by Cambridge University Press:  08 December 2009

David T. Jones*
Affiliation:
Department of Entomology, Natural History Museum, London, SW7 5BD, UK
Homathevi Rahman
Affiliation:
Institute for Tropical Biology & Conservation, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia
David E. Bignell
Affiliation:
School of Biological and Chemical Sciences, Queen Mary, University of London, E1 4NS, UK
Anggoro H. Prasetyo
Affiliation:
Zoology Division, Research Centre for Biology – LIPI. Widyasatwaloka, Jl. Raya Bogor km 46, PO Box 25, Cibinong 16911, Bogor, Indonesia
*
1Corresponding author. Email: dtj@nhm.ac.uk

Abstract:

Previous studies in Sundaland (Borneo, Sumatra, Java and Peninsular Malaysia) have shown that termite assemblages in natural forests have a characteristic structure. These typical forest assemblages contain many soil-feeding species. However, this study investigated four natural forest sites in Borneo with depauperate termite assemblages, and compared their soils with soils from four other sites that have typical termite assemblages. In contrast to the typical assemblages, the four depauperate assemblages all have low species density (<35%), low relative abundance (<30%), a virtual absence of soil-feeders, significantly fewer wood-feeders, and a near-absence of species of Rhinotermitidae, Amitermes-group, Termes-group, Pericapritermes-group and Oriensubulitermes-group. The depauperate sites are on ultramafic-derived soils and have significantly higher concentrations of calcium, magnesium, nickel, chromium, cobalt, copper and zinc compared with the non-ultramafic soils at sites with typical assemblages. In addition, soil pH at the depauperate sites is significantly higher (>pH 5.4) compared with soils at the typical sites (which are all below pH 4.7). Possible mechanisms to explain the depauperate termite assemblages on ultramafic soils include metal toxicity, high pH disrupting gut physiology, and microbial interactions with metals.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AANEN, D. K. & EGGLETON, P. 2005. Fungus-growing termites in African rain forest. Current Biology 15:851855.CrossRefGoogle ScholarPubMed
ABE, T. 1978. Studies on the distribution and ecological role of termites in a lowland rain forest of west Malaysia. 1. Faunal composition, size, colouration and nest of termites in Pasoh Forest Reserve. Kontyu 46:273290.Google Scholar
ABE, T. & MATSUMOTO, T. 1979. Studies on the distribution and ecological role of termites in a lowland rain forest of West Malaysia. 3. Distribution and abundance of termites in Pasoh Forest Reserve. Japanese Journal of Ecology 29:337351.Google Scholar
AMIR, H. & PINEAU, R. 2003. Release of Ni and Co by microbial activity in New Caledonian ultramafic soils. Canadian Journal of Microbiology 49:288293.CrossRefGoogle ScholarPubMed
BIGNELL, D. E. & EGGLETON, P. 1995. On the elevated intestinal pH of higher termites (Isoptera:Termitidae). Insectes Sociaux 42:5769.CrossRefGoogle Scholar
BIGNELL, D. E. & EGGLETON, P. 2000. Termites in ecosystems. Pp. 363387 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
BODEN, D. 2001. Site and forest classification studies in the PT Aya Yayang Indonesia Concession. South and Central Kalimantan Production Forest Project, for the European Commission Indonesia Forest Programme. 126 pp.Google Scholar
BRAECKMAN, B., RAES, H. & VANHOYE, D. 1997. Heavy metal toxicity in an insect cell line. Effects of cadmium chloride, mercuric chloride and methylmercuric chloride on cell viability and proliferation in Aedes albopictus cells. Cell Biology and Toxicology 13:389397.CrossRefGoogle Scholar
BRAUMAN, A. 2000. Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review. European Journal of Soil Biology 36:117125.CrossRefGoogle Scholar
BRAUMAN, A., BIGNELL, D. E. & TAYASU, I. 2000. Soil feeding termites: microbial associations and digestive mechanisms. Pp. 233260 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
BREARLEY, F. Q., PRAJADINATA, S., KIDD, P. S., PROCTOR, J. & SURIANTATA 2004. Structure and floristics of an old secondary rain forest in Central Kalimantan, Indonesia, and a comparison with adjacent primary forest. Forest Ecology and Management 195:385397.CrossRefGoogle Scholar
BRUNE, A. & KÜHL, M. 1996. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. Journal of Insect Physiology 42:11211127.CrossRefGoogle Scholar
CHAPPELL, N. A., TERNAN, J. L. & BIDIN, K. 1999. Correlation of physicochemical properties and sub-erosional landforms with aggregate stability variations in a tropical ultisol disturbed by forestry operations. Soil and Tillage Research 50:5571.CrossRefGoogle Scholar
COLLINS, N. M. 1979. A comparison of the soil macrofauna of three lowland forest types in Sarawak. Sarawak Museum Journal 27:267282.Google Scholar
COLLINS, N. M. 1980. The distribution of soil macrofauna on the West Ridge of Gunung (Mount) Mulu, Sarawak. Oecologia 44:263275.CrossRefGoogle ScholarPubMed
COLLINS, N. M. 1984. The termites (Isoptera) of the Gunung Mulu National Park, with a key to the genera known from Sarawak. Sarawak Museum Journal 30:6587.Google Scholar
DAVIES, R. G., EGGLETON, P., JONES, D. T., GATHORNE-HARDY, F. J. & HERNÁNDEZ, L. M. 2003. Evolution of termite functional diversity: analysis and synthesis of local ecological and regional influences on local species richness. Journal of Biogeography 30:847877.CrossRefGoogle Scholar
DONOVAN, S. E., EGGLETON, P. & BIGNELL, D. E. 2001. Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26:356366.CrossRefGoogle Scholar
DOUGLAS, I., BIDIN, K., BALAMURUGAN, G., CHAPPELL, N. A., WALSH, R. P. D., GREER, T. & SINUN, W. 1999. The role of extreme events in the impacts of selective tropical forestry on erosion during harvesting and recovery phases at Danum Valley, Sabah. Philosophical Transactions of the Royal Society of London, Series B 354:17491761.CrossRefGoogle ScholarPubMed
EGGLETON, P. & BIGNELL, D. E. 1997. Secondary occupation of epigeal termite (Isoptera) mounds by other termites in the Mbalmayo Forest Reserve, southern Cameroon, and its biological significance. Journal of African Zoology 111:489498.Google Scholar
EGGLETON, P., HOMATHEVI, R., JEEVA, D., JONES, D. T., DAVIES, R. G. & MARYATI, M. 1997. The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, East Malaysia. Ecotropica 3:119128.Google Scholar
EGGLETON, P., HOMATHEVI, R., JONES, D. T., MACDONALD, J., JEEVA, D., BIGNELL, D. E., DAVIES, R. G. & MARYATI, M. 1999. Termite assemblages, forest disturbance and greenhouse gas fluxes in Sabah, East Malaysia. Philosophical Transactions of the Royal Society of London, Series B 354:17911802.CrossRefGoogle ScholarPubMed
FOUNTAIN, M. T. & HOPKIN, S. P. 2004. A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory. Ecotoxicology 13:573587.CrossRefGoogle ScholarPubMed
GATHORNE-HARDY, F. J., SYAUKANI, DAVIES, R. G., EGGLETON, P. & JONES, D. T. 2002. Quaternary rainforest refugia in Southeast Asia: using termites (Isoptera) as indicators. Biological Journal of the Linnean Society 75:453466.CrossRefGoogle Scholar
GATHORNE-HARDY, F., SYAUKANI & EGGLETON, P. 2001. The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). Journal of Tropical Ecology 17:379393.CrossRefGoogle Scholar
GATHORNE-HARDY, F. J., SYAUKANI & INWARD, D. J. G. 2006. Recovery of termite (Isoptera) assemblage structure from shifting cultivation in Barito Ulu, Kalimantan, Indonesia. Journal of Tropical Ecology 22:605608.CrossRefGoogle Scholar
GILLISON, A. N., JONES, D. T., SUSILO, F. X. & BIGNELL, D. E. 2003. Vegetation indicates diversity of soil macroinvertebrates: a case study with termites along a land-use intensification gradient in lowland Sumatra. Organisms, Diversity and Evolution 3:111126.CrossRefGoogle Scholar
HARRIS, W. V. 1963. Exploration du Parc National de la Garamba. Part 42, Isoptera. Hayez, Brussels. 43 pp.Google Scholar
HOLT, J. A. & COVENTRY, R. J. 1982. Occurrence of termites (Isoptera) on cracking clay soils in northeastern Queensland. Journal of the Australian Entomological Society 21:135136.CrossRefGoogle Scholar
HOLT, J. A. & LEPAGE, M. 2000. Termites and soil properties. Pp. 389407 in Abe, T., Bignell, D. E. & Higashi, M. (eds.). Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
HOMATHEVI, R. 1999. Diversity and ecology of forest termite (Isoptera) populations in Sabah, East Malaysia, with special reference to the Termes–Capritermes clade. PhD Thesis, Universiti Malaysia Sabah, Kota Kinabalu, 334 pp.Google Scholar
HOPKIN, S. P. 1989 Ecophysiology of metals in terrestrial invertebrates. Elsevier Applied Science, London. 366 pp.Google Scholar
INWARD, D. J. G., VOGLER, A. P. & EGGLETON, P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illustrates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44:953967.CrossRefGoogle Scholar
JI, R. & BRUNE, A. 2006. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 78:267283.CrossRefGoogle Scholar
JONES, D. T. 1996. A quantitative survey of the termite assemblage and its consumption of food in lowland mixed dipterocarp forest in Brunei Darussalam. Pp. 297305 in Edwards, D. S., Booth, W. E. & Choy, S. (eds.). Tropical rainforest research – current issues. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
JONES, D. T. & BRENDELL, M. J. D. 1998. The termite (Insecta: Isoptera) fauna of Pasoh Forest Reserve, Malaysia. Raffles Bulletin of Zoology 46:7991.Google Scholar
JONES, D. T. & EGGLETON, P. 2000. Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37:191203.CrossRefGoogle Scholar
JONES, D. T. & PRASETYO, A. H. 2002. A survey of the termites (Insecta: Isoptera) of Tabalong district, South Kalimantan, Indonesia. Raffles Bulletin of Zoology 50:117128.Google Scholar
JONES, D. T., SUSILO, F. X., BIGNELL, D. E., HARDIWINOTO, S., GILLISON, A. N. & EGGLETON, P. 2003. Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40:380391.CrossRefGoogle Scholar
JONES, D. T., DAVIES, R. G. & EGGLETON, P. 2006. Sampling termites in forest habitats: a reply to Roisin and Leponce. Austral Ecology 31:429431.CrossRefGoogle Scholar
LEAKEY, R. J. G. & PROCTOR, J. 1987. Invertebrates in the litter and soil at a range of altitudes on Gunung Silam, a small ultrabasic mountain in Sabah. Journal of Tropical Ecology 3:119129.CrossRefGoogle Scholar
LEE, K. E. & WOOD, T. G. 1971. Termites and soils. Academic Press, London.Google Scholar
LEONG, K. M. 1974. The geology and mineral resources of the Upper Segama Valley and Darvel Bay area, Sabah, Malaysia. Geological Survey of Malaysia, Memoir 4:1105.Google Scholar
MANDO, A., STROOSNIJDER, L. & BRUSSAARD, L. 1996. Effects of termites on infiltration into crusted soil. Geoderma 74:107113.CrossRefGoogle Scholar
MARTIUS, C. 1994. Termite nests as structural elements of the Amazon floodplain forest. Andrias 13:137150.Google Scholar
NICHOL, H., LAW, J. H. & WINZERLING, J. J. 2002. Iron metabolism in insects. Annual Review of Entomology 47:535559.CrossRefGoogle ScholarPubMed
ODA 1974. Tawau (sheet NB50–51), 1:250,000 scale. The soils of Sabah. Overseas Development Administration, Surbiton.Google Scholar
PENDRY, C. A. & PROCTOR, J. 1997. Altitudinal zonation of rain forest on Bukit Belalong, Brunei: soils, forest structure and floristics. Journal of Tropical Ecology 13:221241.CrossRefGoogle Scholar
PROCTOR, J. 1992. The vegetation over ultramafic rocks in the tropical Far East. Pp. 249270 in Roberts, B. A. & Proctor, J. (eds.). The ecology of areas with serpentinized rocks: a world view. Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
PROCTOR, J. 1999. Toxins, nutrient shortages and droughts: the serpentine challenge. Trends in Ecology and Evolution 14:334335.CrossRefGoogle Scholar
PROCTOR, J., ANDERSON, J. M., CHAI, P. & VALLACK, H. W. 1982. Ecological studies in four contrasting lowland rain forests in Gunung Mulu National Park, Sarawak. 1. Forest environment, structure and floristics. Journal of Ecology 71:237260.CrossRefGoogle Scholar
PROCTOR, J., LEE, Y. F., LANGLEY, A. M., MUNRO, W. R. C. & NELSON, T. 1988. Ecological studies on Gunung Silam, a small ultramafic mountain in Sabah, Malaysia. I. Environment, forest structure and floristics. Journal of Ecology 76:320340.CrossRefGoogle Scholar
RATCLIFFE, F. N., GAY, F. J. & GREAVES, T. 1952 Australian termites: the biology, recognition, and economic importance of the common species. CSIRO, Melbourne. 124 pp.Google Scholar
SALICK, J. & THO, Y. P. 1984. An analysis of termite faunae in Malayan rainforests. Journal of Applied Ecology 21:547561.CrossRefGoogle Scholar
TER BRAAK, C. J. F. & SMILAUER, P. 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination. Microcomputer Power, Ithaca.Google Scholar
THOMAS, L. & PROCTOR, J. 1997. Invertebrates in the litter and soil on the ultramafic Mount Giting-Giting, Philippines. Journal of Tropical Ecology 13:125131.CrossRefGoogle Scholar
VU, A. T., NGUYEN, N. C. & LEADBETTER, J. R. 2004. Iron reduction in the metal-rich guts of wood-feeding termites. Geobiology 2:239247.CrossRefGoogle Scholar
WILD, H. 1975. Termites and the serpentines of the Great Dyke of Rhodesia. Transactions of the Rhodesia Scientific Association 57:111.Google Scholar
WILSON, T. G. 2001. Resistance of Drosophila to toxins. Annual Review of Entomology 46:545571.CrossRefGoogle ScholarPubMed
YAMASHITA, T. & TAKEDA, H. 2003. Soil nutrient flux in relation to trenching effects under two dipterocarp forest sites. Pp. 5972 in Okuda, T., Manokaran, N., Matsumoto, Y., Niiyama, K., Thomas, S. C. & Ashton, P. S. (eds.). Pasoh: ecology of a lowland rain forest in Southeast Asia. Springer-Verlag, Tokyo.CrossRefGoogle Scholar