Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:27:25.008Z Has data issue: false hasContentIssue false

Fruits of Melastomataceae: phenology in Andean forest and role as a food resource for birds

Published online by Cambridge University Press:  08 December 2011

Margarita M. Kessler-Rios
Affiliation:
Fundación EcoAndina, Carrera 2 A Oeste No. 12–111, Cali, Colombia
Gustavo H. Kattan*
Affiliation:
Fundación EcoAndina, Carrera 2 A Oeste No. 12–111, Cali, Colombia Departamento de Ciencias Naturales y Matemáticas, Pontificia Universidad Javeriana Seccional Cali, Calle 18 No. 118–250, Cali, Colombia
*
1Corresponding author. Email: gustavokattan@gmail.com

Abstract:

The fruits of Melastomataceae are consumed by many Neotropical frugivorous birds. Several studies have reported segregated fruiting seasons of melastomes, but this pattern is not widespread. The segregated fruiting phenologies of congeneric sympatric species may be an evolutionary response to reduce competition for seed dispersers. Alternatively, aggregated fruiting phenologies may be favoured if local fruit abundance attracts more frugivores, thus enhancing seed dispersal. We monitored melastome fruiting in transects over a 2-y period at a cloud-forest site in the Colombian Andes. Fruiting periods of nine melastome species were aggregated and fruiting peaks coincided with rainy seasons. In a separate 6-mo study, observations at focal plants revealed that 47 of 61 bird species fed on 10 species of melastome, representing 37.4% of feeding events observed. Melastomes were consumed by birds in a higher proportion than expected from their availability and peak melastome fruit abundance coincided with the breeding season of the frugivore community, when melastomes constituted 54% of feeding records. Melastomes interact with a large number of bird species throughout their annual cycles, and seem to constitute pivotal elements that sustain the frugivore community in montane forests.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BASCOMPTE, J. & JORDANO, P. 2007. Plant–animal mutualistic networks: the architecture of biodiversity. Annual Review of Ecology, Evolution and Systematics 38:567593.CrossRefGoogle Scholar
BELTRÁN, W. & KATTAN, G. 2001. First record of the Slaty-backed Nightingale-thrush in the Central Andes of Colombia, with notes on its ecology and geographical variation. Wilson Bulletin 113:134139.CrossRefGoogle Scholar
BLAKE, J. G., LOISELLE, B. A., MOERMOND, T. C., LEVEY, D. J. & DENSLOW, J. S. 1990. Quantifying abundance of fruits for birds in tropical habitats. Studies in Avian Biology 13:7379.Google Scholar
BLENDINGER, P. G., LOISELLE, B. A. & BLAKE, J. G. 2008. Crop size, plant aggregation, and microhabitat type affect fruit removal by birds from individual melastome plants in the Upper Amazon. Oecologia 158:273283.CrossRefGoogle ScholarPubMed
BURNS, K. C. 2002. Seed dispersal facilitation and geographic consistency in bird–fruit abundance patterns. Global Ecology and Biogeography 11:253259.CrossRefGoogle Scholar
CARLO, T. A. 2005. Interspecific neighbors change seed dispersal pattern of an avian-dispersed plant. Ecology 86:24402449.CrossRefGoogle Scholar
CARLO, T. A. & AUKEMA, J. E. 2005. Female-directed dispersal and facilitation between a tropical mistletoe and a dioecious host. Ecology 86:32453251.CrossRefGoogle Scholar
CHARLES-DOMINIQUE, P. 1993. Speciation and coevolution: an interpretation of frugivory phenomena. Vegetatio 107/108:7584.CrossRefGoogle Scholar
ELLISON, A. M., DENSLOW, J. S., LOISELLE, B. A. & BRENES, D. 1993. Seed and seedling ecology of Neotropical Melastomataceae. Ecology 74:17331749.CrossRefGoogle Scholar
FRANKIE, G. W., BAKER, H. G. & OPLER, P. A. 1974. Comparative phenological studies of trees in tropical wet and dry forest in the lowlands of Costa Rica. Journal of Ecology 62:881919.CrossRefGoogle Scholar
GALETTI, M. & STOTZ, D. 1996. Miconia hypoleuca (Melastomataceae) como espécie-chave para aves frugívoras no sudeste do Brasil. Revista Brasileira de Biologia 56:435439.Google Scholar
GLEESON, S. F. 1981. Character displacement in flowering phenologies. Oecologia 51:294295.CrossRefGoogle ScholarPubMed
HILTY, S. 1980. Flowering and fruiting periodicity in a premontane rain forest in Pacific Colombia. Biotropica 12:292306.CrossRefGoogle Scholar
JORDANO, P. 2000. Fruits and frugivory. Pp. 125166 in Fenner, M. (ed.). Seeds: the ecology of regeneration in plant communities. (Second edition). CABI Publications, Wallingford.CrossRefGoogle Scholar
JORDANO, P., BASCOMPTE, J. & OLESEN, J. M. 2003. Invariant properties in coevolutionary networks of plant–animal interactions. Ecology Letters 6:6981.CrossRefGoogle Scholar
LEVEY, D. J. 1988. Spatial and temporal variation in Costa Rican fruit and fruit-eating bird abundance. Ecological Monographs 58:251269.CrossRefGoogle Scholar
LOISELLE, B. & BLAKE, J. G. 1990. Diets of understory fruit eating-birds in Costa Rica: seasonality and resource abundance. Studies in Avian Biology 13:91103.Google Scholar
LOISELLE, B. A. & BLAKE, J. G. 1991. Temporal variation in birds and fruits along an elevational gradient in Costa Rica. Ecology 72:180193.CrossRefGoogle Scholar
LORTIE, C. J., BROOKER, R. W., CHOLER, P., KIKVIDZE, Z., MICHALET, R., PUGNAIRE, F. I. & CALLAWAY, R. M. 2004. Rethinking plant community theory. Oikos 107:433438.CrossRefGoogle Scholar
MICHELANGELI, F. A., PENNEYS, D. S., GIZA, J., SOLTIS, D., HILLS, M. H. & SKEAN, J. D. 2004. A preliminary phylogeny of the tribe Miconieae (Melastomataceae) based on nrlTS sequence data and its implications on inflorescence position. Taxon 53:279290.CrossRefGoogle Scholar
MILLER, A. H. 1963. Seasonal activity and ecology of the avifauna of an equatorial cloud forest. University of California Publications in Zoology 66:174.Google Scholar
MORRISON, M. L. 1982. The structure of western warbler assemblages: ecomorphological analysis of the Blackthroated, Gray and Hermit warblers. The Auk 99:503513.Google Scholar
MUÑOZ, M. C., LONDOÑO, G. A., RIOS, M. M. & KATTAN, G. H. 2007. Diet of the Cauca Guan: exploitation of a novel food source in times of scarcity. The Condor 109:841851.CrossRefGoogle Scholar
PERES, C. A. 2000. Identifying keystone plant resources in tropical forests: the case of gums from Parkia pods. Journal of Tropical Ecology 16:287317.CrossRefGoogle Scholar
POTTS, K. B., CHAPMAN, C. A. & LWANGA, J. S. 2009. Floristic heterogeneity between forested sites in Kibale National Park, Uganda: insights into the fine-scale determinants of density in a large-bodied frugivorous primate. Journal of Animal Ecology 78:12691277.CrossRefGoogle Scholar
POULIN, B., WRIGHT, J., LEFEBVRE, G. & CALDERON, O. 1999. Interspecific synchrony and asynchrony in the fruting phenologies of congeneric bird-dispersed plants in Panama. Journal of Tropical Ecology 15:213227.CrossRefGoogle Scholar
RATHCKE, B. & LACEY, E. P. 1985. Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics 16:179214.CrossRefGoogle Scholar
RIOS, M. M., GIRALDO, P. & CORREA, D. 2004. Guía de frutos y semillas de la cuenca media del río Otún. Fundación EcoAndina, Cali. 248 pp.Google Scholar
RIOS, M. M., MUÑOZ, M. C. & LONDOÑO, G. A. 2006. Historia natural de la Pava Caucana (Penelope perspicax). Ornitología Colombiana 4:1627.Google Scholar
SARACCO, J. F., COLLAZO, J. A. & GROOM, M. J. 2004. How do frugivores track resources? Insights from spatial analyses of bird foraging in a tropical forest. Oecologia 139:235245.CrossRefGoogle Scholar
SARACCO, J. F., COLLAZO, J. A., GROOM, M. J. & CARLO, T. A. 2005. Crop size and fruit neighborhood effects on bird visitation to fruiting Schefflera morototoni in Puerto Rico. Biotropica 37:8187.CrossRefGoogle Scholar
SARGENT, S. 1990. Neighborhood effects on fruit removal by birds: a field experiment with Viburnum dentatum (Caprifoliaceae). Ecology 71:12891298.CrossRefGoogle Scholar
SLOAN, S. A., ZIMMERMAN, J. K. & SABAT, A. M. 2007. Phenology of Plumeria alba and its herbivores in a tropical dry forest. Biotropica 39:195201.CrossRefGoogle Scholar
SMITH-RAMÍREZ, C. & ARMESTO, J. J. 1994. Flowering and fruiting in the temperate rainforest of Chiloé, Chile – ecologies and climatic constraints. Journal of Ecology 82:353365.CrossRefGoogle Scholar
SNOW, D. W. 1965. A possible selective factor in the evolution of fruiting seasons in a tropical forest. Oikos 15:274281.CrossRefGoogle Scholar
SNOW, D. W. 1981. Tropical frugivorous birds and their food plants: a world survey. Biotropica 13: 114.CrossRefGoogle Scholar
STILES, G. & ROSSELLI, L. 1993. Consumption of fruits of the Melastomataceae by birds: how diffuse is coevolution? Vegetatio 107/108: 5773.CrossRefGoogle Scholar
THIES, W. & KALKO, K. V. 2004. Phenology of Neotropical pepper plants (Piperaceae) and their association with their main dispersers, two short-tailed fruit bats, Carollia perspicillata and C. castanea (Phyllostomidae). Oikos 104:362376.CrossRefGoogle Scholar
THOMPSON, J. N. 1982. Interaction and coevolution. John Wiley & Sons, New York. 190 pp.CrossRefGoogle Scholar
THOMPSON, J. N. & WILLSON, M. F. 1979. Evolution of temperate fruit/bird interactions: phenological strategies. Evolution 33:973982.CrossRefGoogle ScholarPubMed
VAN SCHAIK, C. P., TERBORGH, J. W. & WRIGHT, S. J. 1993. The phenology of tropical forest: adaptative significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24:353377.CrossRefGoogle Scholar
WHEELWRIGHT, N. T. 1985. Competition for dispersers, and the timing of flowering and fruiting in a guild of tropical trees. Oikos 44:465477.CrossRefGoogle Scholar
WHEELWRIGHT, N. T., HABER, W. A., MURRAY, K. G. & GUINDON, C. 1984. Tropical fruit-eating birds and their food plants: a survey of a Costa Rican lower montane forest. Biotropica 16:173192.CrossRefGoogle Scholar