Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T02:38:51.981Z Has data issue: false hasContentIssue false

Geographical distribution and aspects of the ecology of the hemiparasitic angiosperm Striga asiatica (L.) Kuntze: a herbarium study

Published online by Cambridge University Press:  10 July 2009

Valerie Cochrane
Affiliation:
Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
Malcolm C. Press
Affiliation:
Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK

Abstract

Striga asiatica (Scrophulariaceae) is an obligate root hemiparasite of mainly C4 grasses (including cereals). It is the most widespread of the 42 Striga species occurring in many semi-tropical, semi-arid regions of mainly the Old World. Examination of herbaria specimens revealed that S. asiatica has a wider geographical distribution, is present at higher altitudes and occurs in a more diverse range of habitats than previously reported. The host range is also larger than previously reported and is likely to include a large number of C3 plants. Morphology of examined specimens revealed variation in size and corolla colour suggesting the existence of ecotypes. Climate may exert a significant influence on the distribution of S. asiatica given the diversity of potential host plants and their distribution beyond the current recorded range of S. asiatica.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

Agnew, A. D. Q. & Agnew, S. 1994. Upland Kenya Wild Flowers. East African Natural History Society, Nairobi, Kenya.Google Scholar
Awere, G. 1992. A new species of Striga (Scrophulariaceae) from Ethiopia. Kew Bulletin 47:293294.Google Scholar
Barker, W. R. 1990. New taxa, names and combinations in Lindernia, Peplidium, Stemodia and Striga (Scrophulariaceae) mainly in the Kimberley region. Western Australia Journal of the Adelaide Botanic Gardens 13:7994.Google Scholar
Bebawi, F. F., Eplee, R. E., Harris, C. E. & Norris, R. S. 1984. Longevity of witchweed (Striga asiatica) seed. Weed Science 32:494497.CrossRefGoogle Scholar
Boone, L. S., Fate, G., Chang, M. & Lynn, D. G. 1995. Seed germination. Pp. 1438 in Press, M. C. & Graves, J. D. (eds). Parasitic plants. Chapman & Hall, London.Google Scholar
Clayton, W. D. & Renvoize, S. A. 1986. Genera Graminum; grasses of the world. HMSO, London. 389 pp.Google Scholar
Guled, M. B., Radder, G. D. & Hosmani, M. M. 1991. Efficacy of nitrogen, compost and 2,4-D on Striga control in sorghum. Mysore Journal of Agricultural Sciences 25:712.Google Scholar
Hosmani, M. M. 1978. Striga (a noxious root parasitic weed). University of Agricultural Science, Dharwar, India.Google Scholar
Kasasian, L. 1971. Weed control in the tropics. Leonard Hill, London. 307 pp.Google Scholar
Kumar, L. S. S. & Solomon, S. 1941. A list of some phanerogamic root-parasites attacking economic crops in India. Indian Acadamy of Science Proceedings, Series B 13:151156.CrossRefGoogle Scholar
Lagoke, S. T. O., Parkinson, V. & Agundiabe, R. M. 1991. Parasitic weeds and control methods in Africa. Pp. 314 in Kim, S. K. (ed.). Combating Striga in Africa. NigeriaIITA.Google Scholar
Lane, J. A., Bailey, J. A., Butler, R. C., Terry, P. J. 1993. Resistance of cowpea (Vigna unguiculata (L.)Walp.) to Striga gesnerioides (Willd.) Vatke, a parasitic angiosperm. New Phytologist 125:405412.CrossRefGoogle ScholarPubMed
McGrath, H., Shaw, W. C., Jansen, L. L., Lipscomb, B. R. & Ennis, W. B. 1957. Witchweed (Striga asiatica,) – A new parasitic plant in the United States. USDA, Crops Research Division. 142 pp.Google Scholar
Mboob, S. S. 1989. A regional programme for Striga control in West and Central Africa. Pp. 190194 in Robson, T. O. & Broad, H. R. (eds). Striga-Improved Management for Africa. F.A.O., Cameroon.Google Scholar
Moreno, M. T. & Cubero, J. I. (eds). 1996. Advances in parasitic plant research. Proceedings of the Sixth International Parasitic Weed Simposium (sic). Junta de Andalucia. 929 pp.Google Scholar
Musselman, L. J. 1980. The biology of Striga, Orobanche and other root-parasitic weeds. Annual Review of Phytopathology 18:463489.CrossRefGoogle Scholar
Musselman, L. J. 1987. Taxonomy and ecology. Pp. 312 in Musselman, L. J. (ed.). Parasitic weeds in agriculture. Volume I Striga. CRC Press, Florida.Google Scholar
Nelson, R. R. 1958. Preliminary studies on the host range of Striga asiatica. Plant Disease Reporter 42:376382.Google Scholar
Okafor, L. I. & Zitta, C. 1991. The influence of nitrogen on sorghum-weed competition in the tropics. Tropical Pest Management 37:138143.CrossRefGoogle Scholar
Osman, M. A., Raju, P. S. & Peacock, J. M. 1991. The effect of soil temperature, moisture and nitrogen on Striga asiatica (L) Kuntze seed germination, viability and emergence on sorghum (Sorghum bicolor L.Moench) roots under field conditions. Plant and Soil 131:265273.CrossRefGoogle Scholar
Parker, C. & Riches, C. 1993. Parasitic weeds of the world. CAB International, Oxon. 332 pp.Google Scholar
Patterson, D. T. 1990. Effects of the environment on growth and reproduction of witchweed and the ecological range of witchweed. Pp. 6880 in Sand, P. F., Eplee, R. E. & Westbrooks, R. G. (eds.). Witchweed research and control in the United States. Weed Science Society of America. Champaign, USA.Google Scholar
Press, M. C., Smith, S. & Stewart, G. R. 1991. Carbon acquisition and assimilation in parasitic plants. Functional Ecology 5:278283.CrossRefGoogle Scholar
Ramaiah, K. V. & Parker, C. 1982. Striga and other weeds in sorghum. Pp. 291302 in ICRISAT (ed.). Sorghum in the eighties, Vol. I. ICRISAT, Patancheru, India.Google Scholar
Raynal-Roques, A. 1987. The genus Striga (Scrophulariaceae) in Western and Central Africa – a survey. Pp. 675690 in Weber, H. C. & Forstreuter, W. (eds). Proceedings of 4th International Symposium on Parasitic flowering plants. Philipps-Universität, Marburg, Germany.Google Scholar
Raynal-Roques, A. 1991. Diversification in the genus Striga. Pp. 251261 in Ransom, J. K., Musselman, L. J., Worsham, A. D. & Parker, C. (eds). Proceedings of the 5th International Symposium on Parasitic flowering plants. CIMMYT, Nairobi, Kenya.Google Scholar
Riopel, J. L. & Timko, M. P. 1995. Haustorial initiation and differention. Pp. 3979 in Press, M. C. & Graves, J. D. (eds). Parasitic plants. Chapman and Hall, London.Google Scholar
Sand, P. F. 1987. The American witchweed quarantine and eradication program. Pp. 207223 in Musselman, L. J. (ed.). Parasitic weeds in agriculture. Volume I Striga. CRC Press, Florida, USA.Google Scholar
Sand, P. F., Eplee, R. E. & Westbrooks, R. G. 1990. Witchweed research and control in the United States. Weed Science Society of America. Illinois, USA. 154 pp.Google Scholar
Sauerbornj, . 1991. Parasitic flowering plants, ecology and management. Verlag Josef Margraf, Weikersheim, Germany. 127 pp.Google Scholar
Saunders, A. R. 1933. Studies in phanerogamic parasitism, with particular reference to Striga lutea Lour. South African Department of Agriculture, Science Bulletin No. 128. 56 pp.Google Scholar
Sherif, A. M., Hanna, W. W. & Berhane, M. 1987. The problem of Striga Lour. (Scrophulariaceae) in Ethiopia. Pp. 755762 in Weber, H. C. & Forstreuter, W. (eds). Parasitic flowering plants. University of Marburg, Germany.Google Scholar
Tieszen, L. L., Senyimba, M. M., Imbamba, S. K. & Troughton, J. H. 1979. The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia 37:337350.CrossRefGoogle ScholarPubMed
Visser, J. H. 1981. South African parasitic flowering plants. Juta & Co., Cape Town, South Africa.Google Scholar
Zahran, M. A. & Willis, A. J. 1992. The vegetation of Egypt. Chapman & Hall, London. 424 pp.CrossRefGoogle Scholar