Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T19:38:10.257Z Has data issue: false hasContentIssue false

Impact of sedimentary processes on white-sand vegetation in an Amazonian megafan

Published online by Cambridge University Press:  04 October 2016

Carlos L. O. Cordeiro
Affiliation:
National Institute for Space Research (INPE), São José dos Campos 12227‐010, Brazil
Dilce F. Rossetti
Affiliation:
National Institute for Space Research (INPE), São José dos Campos 12227‐010, Brazil
Rogério Gribel
Affiliation:
Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
Hanna Tuomisto
Affiliation:
University of Turku, Turku, FI-20014, Finland
Hiran Zani
Affiliation:
National Institute for Space Research (INPE), São José dos Campos 12227‐010, Brazil
Carlos A. C. Ferreira
Affiliation:
National Institute for Amazonian Research (INPA), Manaus, 69067375, Brazil
Luiz Coelho
Affiliation:
National Institute for Amazonian Research (INPA), Manaus, 69067375, Brazil

Abstract:

Amazonian white-sand vegetation has unique tree communities tolerant to nutrient-poor soils of interest for interpreting processes of adaptation in neotropical forests. Part of this phytophysionomy is confined to Late Quaternary megafan palaeo-landforms, thus we posit that sedimentary disturbance is the main ecological factor controlling tree distribution and structuring in this environment. In this study, we characterize the topographic trend of one megafan palaeo-landform using a digital elevation model and verify its relationship to the forest by modelling the canopy height with remote sensing data. We also compare the composition and structure (i.e. canopy height and diameter at breast height) of tree groups from the outer and inner megafan environments based on the integration of remote sensing and floristic data. The latter consist of field inventories of trees ≥ 10 cm dbh using six (500 × 20 m) plots in várzea, terra firme and igapó from the outer megafan and 20 (50 × 20 m) plots in woodlands and forests from the inner megafan. The unweighted pair group method with arithmetic mean (UPGMA) and the non-metric multidimensional scaling (NMDS) were applied for clustering and dissimilarity analyses, respectively. The megafan is a sand-dominated triangular wetland with a topographic gradient of < 15 cm km−1, being more elevated along its axis. The outer megafan has a higher number of tree species (367), taller canopy height (mean of 14.1 m) and higher diameter at breast height (mean of 18.2 cm) than the white-sand forest. The latter records 89 tree species, mean canopy height of 8.4 cm and mean diameter at breast height of 15.3 cm. Trees increase in frequency closer to channels and toward the megafan's axis. The flooded and nutrient-poor sandy megafan substrate favoured the establishment of white-sand vegetation according to the overall megafan topography and morphological heterogeneities inherent to megafan sub-environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADENEY, J. M., CHRISTENSEN, N. L., VICENTINI, A. & COHN-HAFT, M. 2016. White-sand ecosystems in Amazonia. Biotropica 48:723.CrossRefGoogle Scholar
ANDERSON, A. B. 1978. Aspectos florísticos e fitogeográficos de Campinas e Campinaranas, na Amazônia Central, Manaus. M.Sc. thesis, National Institute for Amazonian Research-INPA, Manaus-AM.Google Scholar
ANDERSON, A. B. 1981. White-sand vegetation of Brazilian Amazonia. Biotropica 13:199210.Google Scholar
BURNHAM, K. P., ANDERSON, D. R. & HUYVAERT, K. P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65:2335.CrossRefGoogle Scholar
CORDEIRO, C. L. O. & ROSSETTI, D. F. 2015. Mapping vegetation in a late Quaternary landform of the Amazonian wetlands using object-based image analysis and decision tree classification. International Journal of Remote Sensing 13:33973422.Google Scholar
DAMASCO, G., VICENTINI, A., CASTILHO, C. V., PIMENTEL, T. P. & NASCIMENTO, H. E. M. 2013. Disentangling the role of edaphic variability, flooding regime and topography of Amazonian white-sand vegetation. Journal of Vegetation Science 24:384394.Google Scholar
DAVIS, J. C. 1986. Statistics and data analysis in geology. John Wiley & Sons, New York. 646 pp.Google Scholar
FIELDING, C. R., ASHWORTH, P. J., BEST, J. L., PROKOCKI, E. W. & SMITH, G. H. S. 2012. Tributary, distributary and other fluvial patterns: what really represents the norm in the continental rock record? Sedimentary Geology 261–262:1532.Google Scholar
FIGUEIREDO, F. O. G., COSTA, F. R. C., NELSON, B. W. & PIMENTEL, T. P. 2014. Validating forest types based on geological and land-form features in central Amazonia. Journal of Vegetation Science 25:198212.Google Scholar
FINE, P. V. A. & BARALOTO, C. 2016. Habitat endemism in white-sand forests: insights into the mechanism of lineage diversification and community assembly of the neotropical flora. Biotropica 48:2433.Google Scholar
GRIBEL, R., FERREIRA, C. A. C., COELHO, L. S., SANTOS, J. L., RAMOS, J. F. & SILVA, K. A. F. 2009. Vegetação do Parque Nacional do Viruá – RR. Relatório Técnico, Instituto Chico Mendes de Biodiversidade–ICMBio. 59 pp.Google Scholar
HABERMANN, G. & BRESSAN, A. C. G. 2011. Root, shoot and leaf traits of the congeneric Styrax species may explain their distribution patterns in the cerrado sensu lato areas in Brazil. Functional Plant Biology 38:209218.Google Scholar
HARTLEY, A. J., WEISSMANN, G. S., NICHOLS, G. J. & WARWICK, G. L. 2010. Large distributive fluvial systems: characteristics, distribution, and controls on development. Journal of Sedimentary Research 80:167183.Google Scholar
HENGL, T., HEUVELINK, G. B. M. & ROSSITER, D. G. 2007. About regression-kriging: from equations to case studies. Computers and Geosciences 33:13011315.Google Scholar
HIGGINS, M. A., RUOKOLAINEN, K., TUOMISTO, H., LLERENA, N., CARDENAS, G., PHILLIPS, O. L., VÁSQUEZ, R. & RÄSÄNEN, M. 2011. Geological control of floristic composition in Amazonian forests. Journal of Biogeography 38:21362149.Google Scholar
HOPKINS, M. J. G. 2007. Modelling the known and unknown plant biodiversity of the Amazon Basin. Journal of Biogeography 34:14001411.Google Scholar
JONES, T. A., HAMILTON, D. E., JOHNSON, C. R. 1986. Contouring geologic surfaces with the computer. Springer, New York. 314 pp.Google Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. Elsevier Science BV, Amsterdam, the Netherlands. 870 pp.Google Scholar
LISBOA, P. L. 1975. Estudos sobre a vegetação das Campinas Amazônicas III. Observações gerais e revisão bibliográfica sobre as campiranas amazônicas de areia branca. Acta Amazônica 5:211223.Google Scholar
MENDONÇA, B. A. F., SIMAS, F. N. B., SCHAEFER, C. E. G. R., FILHOS, E. I. F., VALE, J. R. J. F. & MENDONÇA, J. G. F. 2014. Podzolized soils and paleoenvironmental implications of white-sand vegetation (Campinarana) in the Viruá National Park, Brazil. Geoderma Regional 2–3:920.Google Scholar
MORI, S. 1990. Diversificação e conservação de Lecythidaceae neotropicais. Acta Botanica Brasileira 4:4568.Google Scholar
MOULATLET, G. M., COSTA, F. R. C., RENNÓ, C. D., EMILIO, T. & SCHIETTI, J. 2014. Local hydrological conditions explain floristic composition in lowland Amazonian Forests. Biotropica 46:395403.Google Scholar
NAKA, L. N., COHN-HAFT, M., MALLET-RODRIGUES, F., SANTOS, M. S. D. & TORRES, M. F. 2006. The Avifauna of the Brazilian state of Roraima: bird distribution and biogeography in the Rio Branco basin. Revista Brasileira de Ornitologia 14:197238.Google Scholar
NICHOLS, G. J. & FISHER, J. A. 2007. Processes, facies and architecture of fluvial distributary system deposits. Sedimentary Geology 195:7590.Google Scholar
PEREIRA, P. A. 2013. Chrysobalanaceae no Parque Nacional Viruá (Roraima) e distribuição de domácias em Hirtella dorvalii Prance. M.Sc. Thesis, National Institute for Amazonian Research – INPA, Manaus, AM.Google Scholar
PESSENDA, L. C. R., BOULET, R., ARAVENA, R., ROSOLEN, V., GOUVEIA, S. E. M., RIBEIRO, A. S. & LAMOTTE, M. 2001. Origin and dynamics of soil organic matter and vegetation change during the Holocene in a forest-savanna transition zone, Brazilian Amazon region. The Holocene 11:250254.CrossRefGoogle Scholar
PIRES, J. M. & PRANCE, G. T. 1985. The vegetation types of the brazilian amazon. Pp. 109145 in Prance, G. T & Lovejoy, T. E. (eds.). Amazonia. Pergamon Press, Oxford.Google Scholar
RADAMBRASIL. 1976. Folha NA.20 Boa Vista: Geologia e mapeamento geológico, geomorfologia, pedologia, vegetação e uso potencial da terra. Rio de Janeiro. 428 pp.Google Scholar
ROSSETTI, D. F., ZANI, H., COHEN, M. C. L. & CREMON, É. H. 2012a. A Late Pleistocene-Holocene wetland megafan in the Brazilian Amazonia. Sedimentary Geology 281:5068.Google Scholar
ROSSETTI, D. F., BERTANI, T. C., ZANI, H., CREMON, É. H. & HAYAKAWA, E. H. 2012b. Late Quaternary sedimentary dynamics in Western Amazonia: implications for the origin of open vegetation/forest contrasts. Geomorphology 177:7492.Google Scholar
ROSSETTI, D. F., COHEN, M. C. L., BERTANI, T. C., HAYAKAWA, E. H., PAZ, J. D. S., CASTRO, D. F. & FRIAES, Y. 2014a. Late Quaternary fluvial terrace evolution in the main southern Amazonian tributary. Catena 116:1937.Google Scholar
ROSSETTI, D. F., ZANI, H. & CREMON, É. H. 2014b. Fossil megafans evidenced by remote sensing in the Amazonian wetlands. Zeitschrift für Geomorphologie 58:145161.CrossRefGoogle Scholar
ROUSE, J. W., HAAS, R. H., SCHELL, J. A. & DEERING, D. W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. Pp. 309317 in Freden, S. C., Mercanti, E. P. & Becker, M. A. (eds.). Third Earth Resources Technology Satellite – 1 Symposium, I: Technical Presentations. NASA.Google Scholar
RUNDEL, P. W. 1989. Ecological success in relation to plant form and function in the woody legumes. Pp. 377398 in Stirton, C. H. & Zarucchi, J. L. (eds.). Advances in legume biology. Monographs in Systematic Botany from the Missouri Botanical Gardens.Google Scholar
SILVERMAN, B. W. 1986. Density estimation for statistics and data analysis. Chapman & Hall, New York. 175 pp.Google Scholar
SLINGERLAND, R. & SMITH, N. D. 2004. River avulsions and their deposits. Annual Review of Earth and Planetary Sciences 32:257285.Google Scholar
SWAN, A. R. H. & SANDILANDS, M. 1995. Introduction to geological data analysis. Blackwell Science, Oxford. 446 pp.Google Scholar
TER STEEGE, H. & ZONDERVAN, G. 2000. A preliminary analysis of large-scale forest inventory data of the Guiana shield. Pp. 3554 in ter Steege, H. (eds.). Plant diversity in Guyana. Tropenbos Series 18. Tropenbos Foundation, Wageningen.Google Scholar
TER STEEGE, H., PITMAN, N. C. A., PHILLIPS, O. L., CHAVE, J., SABATIER, D., DUQUE, A., MOLINO, J. F., PRÉVOST, M. F., SPICHIGER, R. & CASTELLANOS, H. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444447.CrossRefGoogle ScholarPubMed
TUOMISTO, H & RUOKOLAINEN, K. 1997. The role of ecological knowledge in explaining biogeography and biodiversity in Amazonia. Biodiversity and Conservation 6:347357.Google Scholar
TUOMISTO, H., RUOKOLAINEN, K. & YLI-HALLA, M. 2003. Dispersal, environment, and floristic variation of Western Amazonian Forests. Science 299:241244.Google Scholar
VALERIANO, M. M. & ROSSETTI, D. F. 2012. Topodata: Brazilian full coverage refinement of SRTM data. Applied Geography 32:300309.Google Scholar
VALERIANO, M. M., KUPLICH, T., STORINO, M., AMARAL, B. E., MENDES, J. N. & LIMA, D. J. 2006. Modeling small watersheds in Brazilian Amazonia with shuttle radar topographic mission-90m data. Computers and Geosciences 32:11691181.Google Scholar
VENABLES, W. N. & RIPLEY, B. D. 2002. Modern applied statistics with S. (Fourth edition). Springer Verlag, New York, 495 pp.Google Scholar
ZANI, H. & ROSSETTI, D. F. 2012. Multitemporal Landsat data applied for deciphering a megafan in northern Amazonia. International Journal of Remote Sensing 33:60606075.CrossRefGoogle Scholar